【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,BC=5,點D、E分別在邊BC、AC上,且BD=CE,將△CDE沿DE翻折,點C落在點F處,且DF∥AB,則BD的長為_____.
【答案】
【解析】
根據(jù)題意作出草圖,根據(jù)勾股定理求出AC,根據(jù)軸對稱的性質(zhì)可得EF=CE,根據(jù)兩直線平行,同位角相等可得∠A=∠EGF,利用相似三角形對應邊成比例列式表示出GE,再表示出CG,然后根據(jù)平行線分線段成比例定理列式計算即可得解.
解:如圖,延長DF交AC于點G,
設BD=CE=x,
∵∠C=90°,AB=13,BC=5,
∴AC===12,
∵將△CDE沿DE翻折,點C落在點F處,
∴EF=CE=x,
∵DF∥AB,
∴∠A=∠EGF,
∴△ABC∽△GEF,
∴,
即,
解得GE=,
∴CG=GE+CE=,
∵DF∥AB,
∴,
即,
解得x=.
即BD=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數(shù)y=ax2+bx+c的解析式.
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?求P坐標及最大面積是多少?
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,直接寫出M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標有數(shù)字2,3,4,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;(2)若AE=5,OE=3,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面xOy內(nèi),點A(6,0)、C(﹣4,0),過點A作直線AB,交y軸的正半軸于點B,且AB=10,點P是直線AB上的一個動點.
(1)求點B的坐標和直線AB的表達式;
(2)若以A、P、C為頂點的三角形與△AOB相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:.
證明:過C作CE∥DA,交BA的延長線于E.
∴∠1=∠E,∠2=∠3.
∵AD是角平分線,
∴∠1=∠2.
∴∠3=∠E.
∴AC=AE.
又∵CE∥DA,
∴.……①
∴.
(1)上述證明過程中,步驟①處的理由是_____
(2)用三角形內(nèi)角平分線定理解答:已知,△ABC中,AD是角平分線,AB=7cm,AC=4cm,BC=6cm,則BD的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2(a+1)x+a2+3=0有兩個實數(shù)根x1,x2
(1)求實數(shù)a的取值范圍
(2)若等腰△ABC的三邊長分別為x1,x2,6,求△ABC的周長
(3)是否存在實數(shù)a,使x1,x2恰是一個邊長為的菱形的兩條對角線的長?若存在,求出這個菱形的面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,點A、B在⊙O上,直線AC是⊙O的切線,OD⊥OB,連接AB交OC于點D.
⑴求證:AC=CD
⑵若AC=2,AO=,求OD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com