如圖,AD為△ABC的中線,BE為三角形ABD中線,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點E到BC邊的距離為多少?
分析:(1)利用三角形的外角等于與它不相鄰的兩個內角之和即可求∠BED的度數(shù);
(2)△BED是鈍角三角形,所以BD邊上的高在BD的延長線上;
(3)先根據三角形的中線把三角形分成面積相等的兩個小三角形,結合題意可求得△BED的面積,再直接求點E到BC邊的距離即可.
解答:解:(1)∵∠BED是△ABE的一個外角,
∴∠BED=∠ABE+∠BAD=15°+35°=50°.

(2)如圖所示,EF即是△BED中BD邊上的高.

(3)∵AD為△ABC的中線,BE為三角形ABD中線,
∴S△BED=
1
4
S△ABC=
1
4
×60=15;
∵BD=5,
∴EF=2S△BED÷BD=2×15÷5=6,
即點E到BC邊的距離為6.
點評:本題主要考查了三角形的高、中線、角平分線,三角形的面積和三角形的內角和等知識,注意全面考慮問題,熟記三角形的中線把三角形分成的兩個小三角形面積一定相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AD為△ABC的中線,∠ADC=45°,把△ADC沿AD對折,點C落在點C′的位置,BC=4,求BC′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 
,
②求△BDE中BD邊上的高EF的長;
(3)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請寫出解題的必要過程)
(4)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案