【題目】如圖,在平面直角坐標(biāo)系中,拋物線 與 軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與 軸交于點(diǎn)C(0,-3),頂點(diǎn)為D。
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo)。
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值。
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
(4)M是拋物線上一點(diǎn),點(diǎn)N在 軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由。
【答案】
(1)
解:∵拋物線過點(diǎn)B(3,0)C(0,-3)
∴
解得:
∴拋物線解析式為:y= -2x-3;
又∵ y=-2x-3= -4;
∴頂點(diǎn)D的坐標(biāo)為:D(1,-4)。
(2)
解:作AH⊥BC于點(diǎn)H
∵ -2x-3=0
解得: =-1, =3
∴A(-1,0)
又∵OB=OC,∠B0C=90°
∴∠OBC=45°
∵AB=4
∴AH=BH=2
∵BC=3
∴CH=
∴tan∠ACB==2
(3)
解:作DG⊥OB于點(diǎn)G
∵BG=2,DG=4
∴tan∠DBG=2
∵tan∠ACB=2
∴∠DBG=∠ACB
當(dāng)點(diǎn)P在點(diǎn)B的右側(cè)時(shí),∠PBD>90°,
∴△PBD為鈍角三角形與△CAB不相似
∴點(diǎn)P在點(diǎn)B的左側(cè)
∴△PBD∽△CAB,且∠DBG=∠ACB
∴
或
∵BD=2
∴BP= 或BP=6
∴P(- ,0)或P(-3,0)
(4)
解:存在;N的坐標(biāo)為:(2+,0); (2-,0) ; (-3,0)
【解析】(1)把點(diǎn)B與點(diǎn)C的坐標(biāo)代入拋物線解析式,利用待定系數(shù)法求解,把解析式整理成頂點(diǎn)式即可寫出頂點(diǎn)坐標(biāo);(2)首先得出A點(diǎn)坐標(biāo),進(jìn)而得出∠OBC=45°,BC=3 , 再過點(diǎn)A做AH⊥BC,垂足為H,利用 tan∠ACB=,求出即可;(3)根據(jù)平行四邊形對邊平行且相等的性質(zhì)得出M及N點(diǎn)坐標(biāo);檢驗(yàn)即可得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運(yùn)規(guī)律如下:當(dāng)x不超過100元時(shí),觀光車能全部租出;當(dāng)x超過100元時(shí),每輛車的日租金每增加5元,租出去的觀光車就會(huì)減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.
(1)優(yōu)惠活動(dòng)期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))
(2)當(dāng)每輛車的日租金為多少元時(shí),每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△ABC的直角邊AB在x軸上,∠ABC=90°.點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(3,4),M是BC邊的中點(diǎn),函數(shù)()的圖象經(jīng)過點(diǎn)M.
(1)求k的值;
(2)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)180°后得到△DEF(點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為點(diǎn)D,E,F(xiàn)),且EF在y軸上,點(diǎn)D在函數(shù)()的圖象上,求直線DF的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車計(jì)費(fèi)方法如圖所示,x(km)表示行駛里程,y(元)表示車費(fèi),請根據(jù)圖象回答下面的問題:
(1)出租車的起步價(jià)是多少元?當(dāng)x>3時(shí),求y關(guān)于x的函數(shù)關(guān)系式.
(2)若某乘客有一次乘出租車的車費(fèi)為32元,求這位乘客乘車的里程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,另一直線y=kx+b(k≠0)經(jīng)過點(diǎn)C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1∶5,求k和b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價(jià)應(yīng)定為每噸多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi)四個(gè)點(diǎn)A,B,C,D.
(1)利用尺規(guī),按下面的要求作圖.要求:不寫畫法,保留作圖痕跡,不必寫結(jié)論.
①作射線AC;
②連接AB,BC,BD,線段BD與射線AC相交于點(diǎn)O;
③在線段AC上作一條線段CF,使CF=AC﹣BD.
(2)觀察(1)題得到的圖形,我們發(fā)現(xiàn)線段AB+BC>AC,得出這個(gè)結(jié)論的依據(jù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com