【題目】隨著城際鐵路的正式開通,從甲市經(jīng)丙市到乙市的高鐵里程比普快里程縮短了90km,運(yùn)行時(shí)間減少了8h,已知甲市到乙市的普快列車?yán)锍虨?220km.高鐵平均時(shí)速是普快平均時(shí)速的2.5倍.
(1)求高鐵列車的平均時(shí)速;
(2)某日王先生要從甲市去距離大約780km的丙市參加14:00召開的會議,如果他買到當(dāng)日9:20從甲市到丙市的高鐵票,而且從丙市火車站到會議地點(diǎn)最多需要1小時(shí).試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下,它能否在開會之前20分鐘趕到會議地點(diǎn)?
【答案】
(1)解:設(shè)普快的平均時(shí)速為x千米/小時(shí),高鐵列車的平均時(shí)速為2.5x千米/小時(shí),
由題意得, ﹣ =8,
解得:x=96,
經(jīng)檢驗(yàn),x=96是原分式方程的解,且符合題意,
則2.5x=240,
答:高鐵列車的平均時(shí)速為240千米/小時(shí)
(2)解:780÷240=3.25,
則坐車共需要3.25+1=4.25(小時(shí)),
從9:20到下午1:40,共計(jì)4 小時(shí)>4.25小時(shí),
故王先生能在開會之前到達(dá)
【解析】(1)設(shè)普快的平均時(shí)速為x千米/小時(shí),高鐵列車的平均時(shí)速為2.5x千米/小時(shí),根據(jù)題意可得,高鐵走(1220﹣90)千米比普快走1220千米時(shí)間減少了8小時(shí),據(jù)此列方程求解;(2)求出王先生所用的時(shí)間,然后進(jìn)行判斷.
【考點(diǎn)精析】關(guān)于本題考查的分式方程的應(yīng)用,需要了解列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位)才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個(gè)單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時(shí)一動點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動,設(shè)它們運(yùn)動的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓。).
(1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)
(2)若的中點(diǎn)C到弦AB的距離為20m,AB=80m,求所在圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀發(fā)現(xiàn):如圖①,在△ABC中,∠ACB=2∠B,∠ACB=90°,AD為∠BAC的平分線,且交BC于D,我們發(fā)現(xiàn)在AB上截取AE=AC,連結(jié)DE,可得AB=AC+CD(不需證明).
(1)探究:如圖②,當(dāng)∠ACB≠90°時(shí),其他條件不變,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系,寫出結(jié)果,并證明;
(2)拓展:如圖③,當(dāng)∠ACB=2∠B,∠ACB≠90°時(shí),AD為△ABC的外角∠CAF的平分線,且交BC的延長線于點(diǎn)D,則線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠α與∠β的兩邊分別平行,且∠α =(x+10)°,∠β =(2x-25)°,則∠α的度數(shù)為( )
A.45° B.75° C.45°或75° D.45°或55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F(xiàn)為垂足,則下列四個(gè)結(jié)論:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.
(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上到-1點(diǎn)的距離等于1個(gè)單位的點(diǎn)所表示的數(shù)是
A. 0 B. -1 C. 1或-2 D. 0或-2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com