【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)同圓的半徑相等和等邊對等角證明:∠ODB=∠OBD=∠ACB,則DH⊥OD,DH是圓O的切線;
(2)如圖2,先證明∠E=∠B=∠C,則H是EC的中點(diǎn),設(shè)AE=x,EC=4x,則AC=3x,由OD是△ABC的中位線,得:OD=AC=,證明△AEF∽△ODF,列比例式可得結(jié)論;
連接OD,如圖1,
∵OB=OD,
∴△ODB是等腰三角形,
∠OBD=∠ODB①,
在△ABC中,∵AB=AC,
∴∠ABC=∠ACB②,
由①②得:∠ODB=∠OBD=∠ACB,
∴OD∥AC,
∵DH⊥AC,
∴DH⊥OD,
∴DH是圓O的切線;
(2)如圖2,
在⊙O中,∵∠E=∠B,
∴由(1)可知:∠E=∠B=∠C,
∴△EDC是等腰三角形,
∵DH⊥AC,且點(diǎn)A是EH中點(diǎn),
設(shè)AE=x,EC=4x,則AC=3x,
連接AD,則在⊙O中,∠ADB=90°,AD⊥BD,
∵AB=AC,
∴D是BC的中點(diǎn),
∴OD是△ABC的中位線,
∴OD∥AC,OD=AC=×3x=,
∵OD∥AC,
∴∠E=∠ODF,
在△AEF和△ODF中,
∵∠E=∠ODF,∠OFD=∠AFE,
∴△AEF∽△ODF,
∴,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng):評價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽查了________名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為________度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有8600名七年級學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的七年級學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(﹣,0),B(﹣,3),∠BAC=90°,C在y軸的正半軸上.
(1)求出C點(diǎn)坐標(biāo);
(2)將線段AB沿射線AC向上平移至第一象限,得線段DE,若D、E兩點(diǎn)均在雙曲線y=上,
①求k的值;
②直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,,斜邊,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),如圖1,連接.
(1)填空: ;
(2)如圖1,連接,作,垂足為,求的長度;
(3)如圖2,點(diǎn),同時(shí)從點(diǎn)出發(fā),在邊上運(yùn)動(dòng),沿路徑勻速運(yùn)動(dòng),沿路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止,已知點(diǎn)的運(yùn)動(dòng)速度為1.5單位秒,點(diǎn)的運(yùn)動(dòng)速度為1單位秒,設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為,求當(dāng)為何值時(shí)取得最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與直線y=3x相交于點(diǎn)C,過直線上點(diǎn)A(1,3)作AB⊥x軸于點(diǎn)B,交反比例函數(shù)圖象于點(diǎn)D,且AB=3BD.
(1)求反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo);
(3)在y軸上確定一點(diǎn)M,使點(diǎn)M到C,D兩點(diǎn)距離之和d=MC+MD最小,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線(k<0)經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=3動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)P(不與點(diǎn)A、C重合)作EF⊥AC,交AB或BC于點(diǎn)E,交AD或DC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)①AC= .②當(dāng)點(diǎn)F在AD上時(shí),用含t的代數(shù)式直接表示線段PF的長 .
(2)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求t的值.
(3)設(shè)方形EFGH的周長為l,求l與t之間的函數(shù)關(guān)系式.
(4)直接寫出對角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為1:2時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.從1,2,3,4,5中隨機(jī)取出一個(gè)數(shù),取得偶數(shù)的可能性比取得奇數(shù)的大
B.若甲組數(shù)據(jù)的方差S甲2=0.31,乙組數(shù)據(jù)的方差S乙2=0.02,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
C.數(shù)據(jù)﹣2,1,3,4,4,5的中位數(shù)是4
D.了解重慶市初中學(xué)生的視力情況,適宜采用抽樣調(diào)查的方法
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com