【題目】實(shí)踐與探究
寬與長(zhǎng)的比是(約0.618)的矩形叫做黃金矩形。黃金矩形給我們以協(xié)調(diào)、均勻的美感。世界各國(guó)許多著名的建筑,為取得最佳的視覺(jué)效果,都采用了黃金矩形的設(shè)計(jì)。
下面我們通過(guò)折紙得到黃金矩形。
第一步,在一張矩形紙片的一端,利用圖1的方法折出一個(gè)正方形,然后把紙片展平。
第二步,如圖2,把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平,折痕是。
第三步,折出內(nèi)側(cè)矩形的對(duì)角線,并把折到圖3中所示的處,折痕為。
第四步,展平紙片,按照所得的點(diǎn)折出,使;過(guò)點(diǎn)折出折痕,使。
(1)上述第三步將折到處后,得到一個(gè)四邊形,請(qǐng)判斷四邊形的形狀,并說(shuō)明理由。
(2)上述第四步折出折痕后得到一個(gè)四邊形,這個(gè)四邊形是黃金矩形,請(qǐng)你說(shuō)明理由。(提示:設(shè)的長(zhǎng)度為2)
(3)在圖4中,再找出一個(gè)黃金矩形_______________________________(黃金矩形除外,直接寫出答案,不需證明,可能參考數(shù)值:)
(4)請(qǐng)你舉一個(gè)采用了黃金矩形設(shè)計(jì)的世界名建筑_________________________.
【答案】(1)四邊形是菱形,見(jiàn)解析;(2)見(jiàn)解析;(3)黃金矩形(或黃金矩形);(4)希臘的巴特農(nóng)神廟(或巴黎圣母院).
【解析】
(1)根據(jù)菱形的判定即可求解;
(2)根據(jù)菱形的性質(zhì)及折疊得到,即可證明;
(3)
(1)解:
四邊形是菱形,
理由如下:
由矩形紙片可得,
∴,
由折疊可得,
∴,
∴,
又由折疊可得,
∴,
∴四邊形是菱形;
(2)證明:設(shè)的長(zhǎng)度為2,
由正方形可得,,
∴,
∵,
∴,
∴,
∴四邊形是矩形,
∵,由折疊可得,,
在中,根據(jù)勾股定理,,
由折疊可得,
∴,
∴,
∴矩形是黃金矩形;
(3)黃金矩形
理由:AG=AD+DG=AB+DG=
AH=2,
∴
∴四邊形AGEH為黃金矩形
(4)希臘的巴特農(nóng)神廟(或巴黎圣母院)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書(shū)沒(méi)帶,于是媽媽立即騎車原路回家拿書(shū)后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書(shū)時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過(guò)程中分別保持勻速.媽媽從C處出發(fā)x分鐘時(shí)離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為_________m/min,圖②中a的值為__________.
(2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y米.
①寫出小明媽媽在騎車由C處返回到A處的過(guò)程中,y與x的函數(shù)表達(dá)式及x的取值范圍;
②在圖③中畫出整個(gè)過(guò)程中y與x的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點(diǎn)的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,AB=2cm,AC=5cm,SABCD=8cm2,E點(diǎn)從B點(diǎn)出發(fā),以1cm每秒的速度,在AB延長(zhǎng)線上向右運(yùn)動(dòng),同時(shí),點(diǎn)F從D點(diǎn)出發(fā),以同樣的速度在CD延長(zhǎng)線上向左運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)在運(yùn)動(dòng)過(guò)程中,四邊形AECF的形狀是____;
(2)t=____時(shí),四邊形AECF是矩形;
(3)求當(dāng)t等于多少時(shí),四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OB=OC,下列結(jié)論:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正確的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)絡(luò)約車公司近期推出了“520專享”服務(wù)計(jì)劃,即要求公司員工做到“5星級(jí)服務(wù)、2分鐘響應(yīng)、0客戶投訴”,為進(jìn)一步提升服務(wù)品質(zhì),公司監(jiān)管部門決定了解“單次營(yíng)運(yùn)里程”的分布情況.老王收集了本公司的5000個(gè)“單次營(yíng)運(yùn)里程”數(shù)據(jù),這些里程數(shù)據(jù)均不超過(guò)25(千米),他從中隨機(jī)抽取了200個(gè)數(shù)據(jù)作為一個(gè)樣本,整理、統(tǒng)計(jì)結(jié)果如下表,并繪制了不完整的頻數(shù)分布直方圖.
組別 | 單次營(yíng)運(yùn)里程“x”(千米) | 頻數(shù) |
第一組 | 0<x≤5 | 72 |
第二組 | 5<x≤10 | a |
第三組 | 10<x≤15 | 26 |
第四組 | 15<x≤20 | 24 |
第五組 | 20<x≤25 | 30 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)表中a= ,樣本中“單次營(yíng)運(yùn)里程”不超過(guò)15千米的頻率為 ;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)估計(jì)該公司5000個(gè)“單次營(yíng)運(yùn)里程”超過(guò)20千米的次數(shù).(寫出解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=60°,連接PO并延長(zhǎng)與⊙O交于C點(diǎn),連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),直接寫出∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:(﹣2)﹣1﹣|﹣|+(﹣1)0+cos45°.
(2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com