【題目】已知∠ACD=90°,MN是過(guò)A點(diǎn)的直線(xiàn),AC=DC,DB⊥MN于點(diǎn)B,連接BC.
(1)如圖1,將△BCD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△ECA.
①求證:點(diǎn)E在直線(xiàn)MN上;
②猜想線(xiàn)段AB、BD、CB滿(mǎn)足怎樣的數(shù)量關(guān)系,并證明你的猜想.
(2)當(dāng)MN繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置時(shí),猜想線(xiàn)段AB、BD、CB又滿(mǎn)足怎樣的數(shù)列關(guān)系,并證明你的猜想.
【答案】(1)①見(jiàn)解析;②A(yíng)B+BD=BC,理由見(jiàn)解析;(2)ABBD=BC,理由見(jiàn)解析;
【解析】
(1)①由四邊形內(nèi)角和定理得出∠CAB+∠CDB=180°,由旋轉(zhuǎn)的性質(zhì)得出△ECA≌△BCD,得出∠EAC=∠BDC,因此∠CAB+∠EAC=180°,即可得出結(jié)論;
②證出△ECB為等腰直角三角形,由勾股定理得出BE=BC,再由BE=AE+AB,AE=BD,即可得出結(jié)論;
(2)過(guò)點(diǎn)C作CE⊥CB與MN交于點(diǎn)E,則∠ECB=90°,∠ACE=∠DCB,證出∠CAE=∠CDB,由ASA證明△ACE≌△DCB,得出AE=DB,EC=BC,證出△ECB為等腰直角三角形,由勾股定理得出EB=BC,即可得出結(jié)論.
(1)①證明:∵DB⊥MN,
∴∠ABD=90,在四邊形ACDB中,
∵∠ACD=90
∴∠ACD+∠ABD=180
∴∠CAB+∠CDB=180
由旋轉(zhuǎn)的性質(zhì)得:△ECA≌△BCD
∴∠EAC=∠BDC,
∴∠CAB+∠EAC=180
∴點(diǎn)E在直線(xiàn)MN上
②解:AB+BD=BC,理由如下:
∵∠ACD=90
∴∠ACB+∠BCD=90
由①知∠ECA=∠BCD,EC=BC
∴∠ECB=∠ECA+∠ACB=90
∴△ECB為等腰直角三角形
∴BE=BC
∵BE=AE+AB
由①知AE=BD
∴AB+BD=BC.
(2)解:ABBD=BC,理由如下:
過(guò)點(diǎn)C作CE⊥CB與MN交于點(diǎn)E,如圖2所示:
則∠ECB=90
∵∠ACD=90
∴∠ACE=∠DCB
∵DB⊥AB
∴∠CAE=∠CDB
∴△ACE≌△DCB(ASA)
∴AE=DB,EC=BC
∴EB=ABAE=ABDB,△ECB為等腰直角三角形,
∴EB=BC
∴ABBD=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,
(1)寫(xiě)出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)求出△ABC的面積;
(3)在圖中畫(huà)出把△ABC先向左平移5個(gè)單位,再向上平移2個(gè)單位后所得的△A′B′C′,并寫(xiě)出各頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種空氣凈化器,每臺(tái)凈化器的成本價(jià)為200元.經(jīng)過(guò)一段時(shí)間的銷(xiāo)售發(fā)現(xiàn),每月的銷(xiāo)售量y(臺(tái))與銷(xiāo)售單價(jià)x(元)的關(guān)系為y=﹣2x+800.
(1)該商店每月的利潤(rùn)為W元,寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式;
(2)若要使每月的利潤(rùn)為20000元,銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)商店要求銷(xiāo)售單價(jià)不低于280元,也不高于350元,求該商店每月的最高利潤(rùn)和最低利潤(rùn)分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)的圖象在第一象限交于點(diǎn)A(8,6),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和的表達(dá)式;
(2)已知點(diǎn)C(0,10),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC。求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF.BE與AC相交于點(diǎn)M,與CF相交于點(diǎn)D,AB與CF相交于點(diǎn)N,∠EAC=∠FAB.有下列結(jié)論:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是多項(xiàng)式的常數(shù)項(xiàng),是項(xiàng)數(shù).
(1) ; ;
(2)在數(shù)軸上,點(diǎn)、分別對(duì)應(yīng)實(shí)數(shù)和,點(diǎn)到點(diǎn)和點(diǎn)的距離分別為和,且,試求點(diǎn)對(duì)應(yīng)的實(shí)數(shù).
(3)動(dòng)點(diǎn)M從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng);動(dòng)點(diǎn)N從B點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即改變方向往右運(yùn)動(dòng)到達(dá)B點(diǎn)后停止運(yùn)動(dòng);若M、N同時(shí)出發(fā),在此過(guò)程中,經(jīng)過(guò)多少秒時(shí)點(diǎn)N為MB或MA的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用相同的小立方體搭一個(gè)幾何體,從正面、上面看到的形狀圖如圖所示,從上面看到的形狀圖中小正方形的字母表示在該位置上小立方體的個(gè)數(shù),請(qǐng)回答下列問(wèn)題:
(1)a,b,c各表示的數(shù)字是幾?
(2)這個(gè)幾何體最多由幾個(gè)小立方體搭成?最少呢?
(3)當(dāng),時(shí),畫(huà)出這個(gè)幾何體從左面看得到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線(xiàn)交AC于點(diǎn)F,交⊙O于點(diǎn)D,DE⊥AB于點(diǎn)E,且交AC于點(diǎn)P,連結(jié)AD.
【1】求證:∠DAC =∠DBA;
【2】求證:是線(xiàn)段AF的中點(diǎn)
【3】若⊙O 的半徑為5,AF = ,求tan∠ABF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從點(diǎn)出發(fā),沿向終點(diǎn)勻速運(yùn)動(dòng),設(shè)點(diǎn)走過(guò)的路程為,的面積為,能正確反映與之間函數(shù)關(guān)系的圖象是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com