精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在RtAEBRtAFC中,∠E=F=90°,BE=CFBEAC相交于點M,與CF相交于點D,ABCF相交于點N,∠EAC=FAB.有下列結論:①∠B=C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結論的序號是________

【答案】①③④

【解析】

只要證明△ABE≌△ACF,△ACN≌△ABM即可判斷.

解:∵∠EAC=∠FAB,

∴∠EAB=∠CAF,

在△ABE和△ACF,

,

∴△ABE≌△ACFASA),

∴∠B=∠C

由△AEB≌△AFC知:∠B=∠C,ACAB;

在△ACN和△ABM,

,

∴△ACN≌△ABMASA);(故④正確)

CMBN,

由于條件不足,無法證得②CDDN;

故答案為:①③④

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)如圖1,一個正方體紙盒的棱長為6厘米,則它的表面積為   平方厘米.

2)將該正方體的一些棱剪開展成一個平面圖形,則需要剪卉   條棱,并求這個平面圖形的周長.

3)如圖2,一個長方體紙盒的長、寬、高分別是a厘米、b厘米、c厘米(abc)將它的一些棱剪開展成一個平面圖形,求這個平面圖形的最大周長,畫出周長最大的平面圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=kx+b分別交x軸、y軸于A1,0)、B0,1),交雙曲線y=于點C、D

1)求k、b的值;

2)寫出不等式kx+b的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平面內有任意一點,按要求解答下列問題:

1)當點外部時,如圖①,過點,,垂足分別為、,量一量的度數,用數學式子表達它們之間的數量關系 ;

2)當點內部時,如圖②,以點為頂點作,使的兩邊分別和的兩邊垂直,垂足分別為、,用數學式子寫出的數量關系;

3)由上述情形,用文字語言敘述結論:如果一個角的兩邊分別和另一個角的兩邊垂直,那么這兩個角 .

4)在圖②中,若,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A、B、C、D是直徑為AB的⊙O上的四個點,CD=BC,ACBD交于點E。

(1)求證:DC2=CE·AC;

(2)若AE=2EC,求之值;

(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,若SACH,求EC之長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠ACD=90°,MN是過A點的直線,AC=DC,DBMN于點B,連接BC

(1)如圖1,BCD繞點C逆時針方向旋轉90°得到ECA

①求證:點E在直線MN上;

②猜想線段AB、BD、CB滿足怎樣的數量關系,并證明你的猜想.

(2)MN繞點A旋轉到如圖2的位置時,猜想線段AB、BD、CB又滿足怎樣的數列關系,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A,B兩地相距450千米,兩地之間有一個加油站O,且AO=270千米,一輛轎車從A地出發(fā),以每小時90千米的速度開往B地,一輛客車從B地出發(fā),以每小時60千米的速度開往A地,兩車同時出發(fā),設出發(fā)時間為t小時.

(1)經過幾小時兩車相遇?

(2)當出發(fā)2小時時,轎車和客車分別距離加油站O多遠?

(3)經過幾小時,兩車相距50千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】求若干個相同的不為零的有理數的除法運算叫做除方. 如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3). 類比有理數的乘方,我們把 2÷2÷2 記作 2,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3),讀作“-3 的圈 4 次方”.

一般地,把a≠0)記作a,記作a 的圈c次方”.

(1)直接寫出計算結果:2= ,(-3) = ,= .

(2)計算 24÷23 + (-8)×2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某數學興趣小組研究我國古代《算法統宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.

(1)求該店有客房多少間?房客多少人?

(2)假設店主李三公將客房進行改造后,房間數大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們如何訂房更合算?

查看答案和解析>>

同步練習冊答案