【題目】閱讀材料:如圖1,中,點(diǎn),在邊上,點(diǎn)在上,,,,延長,交于點(diǎn),,求證:.
等腰三角形是一種常見的軸對稱圖形,幾何試題中我們常將一腰所在的三角形沿著等腰三角形的對稱軸進(jìn)行翻折,從而構(gòu)造軸對稱圖形.
①小明的想法是:將放到中,沿等腰的對稱軸進(jìn)行翻折,即作交于(如圖2)
②小白的想法是:將放到中,沿等腰的對稱軸進(jìn)行翻折,即作交的延長線于(如圖3)
經(jīng)驗(yàn)拓展:等邊中,是上一點(diǎn),連接,為上一點(diǎn),,過點(diǎn)作交的延長線于點(diǎn),,若,,求的長(用含,的式子表示).
【答案】①證明見解析;②證明見解析;[經(jīng)驗(yàn)拓展].
【解析】
閱讀材料:①先根據(jù)三角形全等的判定定理得出,再根據(jù)三角形全等的性質(zhì)可得,又根據(jù)角的和差、等腰三角形的性質(zhì)得出兩組相等的角,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,最后根據(jù)等量代換即可得證;
②先根據(jù)三角形全等的判定定理得出,再根據(jù)三角形全等的性質(zhì)可得,又根據(jù)角的和差、等腰三角形的性質(zhì)得出兩組相等的角,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,即得證;
經(jīng)驗(yàn)拓展:先根據(jù)等腰三角形的性質(zhì)、鄰補(bǔ)角的定義得出,再根據(jù)三角形全等的判定定理與性質(zhì)得出,設(shè),根據(jù)等腰三角形的性質(zhì)、等邊三角形的性質(zhì)分別求出,然后根據(jù)角的和差可得,最后根據(jù)等腰三角形的判定與性質(zhì)得出,從而根據(jù)線段的和差即可得出答案.
閱讀材料:
①小明做法:作交于,則
,
,即
;
②小白做法:作交的延長線于
,即
,即
;
經(jīng)驗(yàn)拓展:延長至點(diǎn),使得,連接
是等邊三角形,設(shè)
是等腰三角形
(等腰三角形的三線合一)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若∠B=30°,求證:以A、O、D、E為頂點(diǎn)的四邊形是菱形.
(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點(diǎn).
()分別求這兩個(gè)函數(shù)的表達(dá)式.
()將直線向上平移個(gè)單位長度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接、,求點(diǎn)的坐標(biāo)及的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=40°,點(diǎn)C是⊙O上不同于A、B的任意一點(diǎn),則∠ACB的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(1)如圖1,過點(diǎn)C作⊙O的切線,與AB延長線相交于點(diǎn)P,若∠CAB=27°,求∠P的度數(shù);
(2)如圖2,D為弧AB上一點(diǎn),OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點(diǎn)P,若∠CAB=10°,求∠P的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,內(nèi)角與外角的平分線相交于點(diǎn),,交于,交于,連接、,下列結(jié)論:①;②;③垂直平分;④.其中正確的是( )
A. ①②④B. ①③④C. ②③④D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB與⊙O相切于點(diǎn)B,過點(diǎn)B作OP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連結(jié)PA,AO,AO的延長線交⊙O于點(diǎn)E,與PB的延長線交于點(diǎn)D.
(1)求證:PA是⊙O的切線;
(2)若tan∠BAD=,且OC=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BE=DF時(shí),∠BAE的大小可以是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中,建立如圖所示的平面真角坐標(biāo)系,已知格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都在格點(diǎn)上)
(1)畫出關(guān)于直線對稱的;并寫出點(diǎn)、、的坐標(biāo).
(2)在直線上找一點(diǎn),使最小,在圖中描出滿足條件的點(diǎn)(保留作圖痕跡),并寫出點(diǎn)的坐標(biāo)(提示:直線是過點(diǎn)且垂直于軸的直線)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com