【題目】閱讀理解:

例:已知: ,

求: 的值.

解:

,

,

,

,

解決問題:

(1)若 ,求 x、y 的值;

(2)已知 ,, 的三邊長且滿足 ,

①直接寫出a=__________.b=___________

②若 中最短邊的邊長(即c<a;c<b),且 為整數(shù),直接寫出 的值可能是

【答案】(1),;(2) , 、、

【解析】

(1)先利用完全平方公式整理成平方和的形式,然后根據(jù)非負(fù)數(shù)的性質(zhì)列式求出x、y的值;

(2)先利用完全平方公式整理成平方和的形式,再利用非負(fù)數(shù)的性質(zhì)求出a、b的值,然后利用三角形的三邊關(guān)系即可求解.

(1) ,

,

解得 ,

(2) ,,

,,,

,

,,

為最短邊,且 為整數(shù),

、、

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:“兩邊及其中一邊的對(duì)角分別相等的兩個(gè)三角形不一定全等”.但是,小亮發(fā)現(xiàn):當(dāng)這兩個(gè)三角形都是銳角三角形時(shí),它們會(huì)全等,除小亮的發(fā)現(xiàn)之外,當(dāng)這兩個(gè)三角形都是時(shí),它們也會(huì)全等;當(dāng)這兩個(gè)三角形其中一個(gè)三角形是銳角三角形,另一個(gè)是時(shí),它們一定不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.

(1)問線段ECBF數(shù)量關(guān)系和位置關(guān)系?并給予證明.

(2)連AM,請問∠AME的大小是多少,如能求寫出過程;不能求,寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)校圖書館上個(gè)月借閱情況,管理老師從學(xué)生對(duì)藝術(shù)、經(jīng)濟(jì)、科普及生活四類圖書借閱情況進(jìn)行了統(tǒng)計(jì),并繪制了下列不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息解答下列問題:

(1)上個(gè)月借閱圖書的學(xué)生有多少人?扇形統(tǒng)計(jì)圖中“藝術(shù)”部分的圓心角度數(shù)是多少?
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)從借閱情況分析,如果要添置這四類圖書300冊,請你估算“科普”類圖書應(yīng)添置多少冊合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三張背面完全相同的數(shù)字牌,它們的正面分別印有數(shù)字“1”、“2”、“3”,將它們背面朝上,洗勻后隨機(jī)抽取一張,記錄牌上的數(shù)字并把牌放回,再重復(fù)這樣的步驟兩次,得到三個(gè)數(shù)字a、b、c,則以a、b、c為邊長正好構(gòu)成等邊三角形的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

(1)BFCE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;

(2)AHCE,垂足為H,交CD的延長線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,E為CD的中點(diǎn),H為BE上的一點(diǎn), ,連接CH并延長交AB于點(diǎn)G,連接GE并延長交AD的延長線于點(diǎn)F.

(1)求證: ;
(2)若∠CGF=90°,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.

從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.

理解概念

如圖1,在中,,,請寫出圖中兩對(duì)“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中有三點(diǎn)A(a,0),B(b,0),C(1,3),且a,b滿足|3b+a﹣2|+=0

(1)A,B的坐標(biāo);

(2)x負(fù)半軸上有一點(diǎn)D,使SDOC=SABC,求點(diǎn)D坐標(biāo):

(3)在坐標(biāo)軸上是否還存在這樣的點(diǎn)D,使SDOC=SABC仍然成立?若存在直接寫出點(diǎn)D的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案