【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3,若S1=4,S3=12,則S2的值為( )
A.16B.24C.48D.64
【答案】D
【解析】
根據(jù)已知條件得到AB=2,CD=2,過A作AE∥CD交BC于E,則∠AEB=∠DCB,根據(jù)平行四邊形的性質(zhì)得到CE=AD,AE=CD=2,由已知條件得到∠BAE=90°,根據(jù)勾股定理得到BE=,于是得到結(jié)論.
解:∵S1=4,S3=12,
∴AB=2,CD=2,
過A作AE∥CD交BC于E,
則∠AEB=∠DCB,
∵AD∥BC,
∴四邊形AECD是平行四邊形,
∴CE=AD,AE=CD=2,
∵∠ABC+∠DCB=90°,
∴∠AEB+∠ABC=90°,
∴∠BAE=90°,
∴BE=,
∵BC=2AD,
∴BC=2BE=8,
∴S2=(8)2=64,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量河對(duì)岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為( )
A. 50m B. 25m C. (50﹣)m D. (50﹣25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;
a<﹣1;其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=36°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是矩形ABCD的對(duì)角線AC的中點(diǎn),E是AD的中點(diǎn).若AB=6,AD=8,則四邊形ABPE的周長(zhǎng)為( )
A. 14 B. 16 C. 17 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng)(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈0.92;cos67°≈0.38;≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點(diǎn),E、F分別為PB、PC的中點(diǎn),△PEF、△PDC、△PAB的面積分別為S、S1、S2.若S=3,則S1+S2的值為( )
A. 3 B. 6 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖與設(shè)計(jì):
在圖1和圖2中,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長(zhǎng)分別為,,4;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為10的正方形;
(3)在圖3的正方形網(wǎng)格中建立平面直角坐標(biāo)系,若各頂點(diǎn)的坐標(biāo)分別為:,,,請(qǐng)你作,使和關(guān)于軸對(duì)稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤(rùn)1200元,B產(chǎn)品每件可獲利潤(rùn)700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤(rùn)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com