【題目】如圖,在矩形ABCD中,E、F分別是BC,AD邊上的點,且AE=CF,若ACEF,試判斷四邊形AECF的形狀,請說明理由.

【答案】四邊形AECF是菱形,理由見解析.

【解析】

由矩形的性質(zhì)得出∠B=D=90°,AB=CDAD=BC,ADBC,由HL證明RtABERtCDF,即可BE=DF,得出CE=AF,由CEAF,證出四邊形AECF是平行四邊形,再由ACEF,即可得出四邊形AECF是菱形.

四邊形AECF是菱形,

理由如下:∵四邊形ABCD是矩形,∴∠B=D=90°,AB=CD,AD=BCADBC,

RtABERtCDF中,

RtABERtCDF(HL),

BE=DF

BC=AD,

CE=AF

CEAF

∴四邊形AECF是平行四邊形,

又∵ACEF

∴四邊形AECF是菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+2(m﹣2)x+3的圖象與x、y軸交于A、B、C三點,其中A(3,0),拋物線的頂點為D.

(1)求m的值及頂點D的坐標;

(2)如圖1,若動點P在第一象限內(nèi)的拋物線上,動點N在對稱軸1上,當PA⊥NA,且PA=NA時,求此時點P的坐標;

(3)如圖2,若點Q是二次函數(shù)圖象上對稱軸右側(cè)一點,設(shè)點Q到直線BC的距離為d,到拋物線的對稱軸的距離為d1,當|d﹣d1|=2時,請求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接2022年冬奧會,鼓勵更多的大學生參與到志愿服務(wù)中,甲、乙兩所學校組織了志愿服務(wù)團隊選拔活動,經(jīng)過初選,兩所學校各有300名學生進入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學生的整體情況,從兩校進入綜合素質(zhì)展示環(huán)節(jié)的學生中分別隨機抽取了50名學生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析,下面給出了部分信息.

a.甲學校學生成績的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,,).

b.甲學校學生成績在這一組是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙學校學生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

83.3

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學校學生,乙學校學生的綜合素質(zhì)展示成績同為82分,這兩人在本校學生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);

2)根據(jù)上述信息,推斷________學校綜合素質(zhì)展示的水平更高,理由為:__________________________

(至少從兩個不同的角度說明推斷的合理性).

3)若每所學校綜合素質(zhì)展示的前120名學生將被選入志愿服務(wù)團隊,預(yù)估甲學校分數(shù)至少達到________分的學生才可以入選.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系內(nèi)的點M滿足橫、縱坐標都為整數(shù),則把點M叫做整點.例如:P10)、Q2,﹣2)都是整點.拋物線ymx24mx+4m2m0)與x軸交于點A、B兩點,若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是( 。

A. m1B. m≤1C. 1m≤2D. 1m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,⊙O的半徑為4,點A是⊙O上一點,直線l過點A;P是⊙O上的一個動點(不與點A重合),過點PPBl于點B,交⊙O于點E,直徑PD延長線交直線l于點F,點A的中點.

(1)求證:直線l是⊙O的切線;

(2)若PA=6,求PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在RtABC中,∠B=90°,∠ACB=30°,點DBC邊上一動點,以AD為邊,在AD的右側(cè)作等邊三角形ADE

1)當AD平分∠BAC時,如圖1,四邊形ADCE    形;

2)過EEFACF,如圖2,求證:FAC的中點;

3)若AB=2

DBC的中點時,過點EEGBCG,如圖3,求EG的長;

DB點運動到C點,則點E所經(jīng)過路徑長為    (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB20,連接BD,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC

1)求證:AECE

2)若sinABD,當點P在線段BC上時,若BP8,求PEC的面積;

3)若∠ABC45°,當點P在線段BC的延長線上時,請求出PEC是等腰三角形時BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c為常數(shù),且a≠0)中的xy的部分對應(yīng)值如表:

x

1

0

1

3

y

1

3

5

3

下列結(jié)論錯誤的是( 。

A.ac0

B.x1時,y的值隨x的增大而減小

C.3是方程ax2+b1x+c0的一個根

D.當﹣1x3時,ax2+b1x+c0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca0)圖象如圖,下列結(jié)論:①abc>0②2a+b=0;m1時,a+b>am2+bm④a-b+c>0;ax12+bx1=ax22+bx2,且x1x2,x1+x2=2.其中正確的有(

A.B.C.①②D.②③

查看答案和解析>>

同步練習冊答案