已知:如圖,△ABC和△CDE都是等邊三角形,點D在BC邊上.求證:AD=BE.
證明見解析.

試題分析:根據(jù)等邊三角形的性質(zhì)可得AC=BC,EC=DC,∠ACD=∠BCE=60°,然后利用“邊角邊”證明△ACD和△BCE全等,再根據(jù)全等三角形對應邊相等證明即可.
試題解析:∵△ABC和△CDE都是等邊三角形,
∴AC=BC,EC=DC,∠ACD=∠BCE=60°.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住.為了尋找這只老鼠,貓頭鷹向上飛至樹頂C處.DF=4米,短墻底部D與樹的底部A間的距離為2.7米,貓頭鷹從C點觀察F點的俯角為53°,老鼠躲藏處M (點M在DE上)距D點3米.
(參考數(shù)據(jù):sin 37°≈0.60, cos 37°≈0.80,tan 37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少再要飛多少米(精確到0.1米)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,點E在BC上,,試在AE上確定一點G,使△ABG≌△DAF.請你寫出兩種確定點G的方案,并就其中一種方案的具體作法證明△ABG≌△DAF.
方案一:作法:                                         ;
方案二:(1)作法:                                        
(2)證明:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC和△ADC有公共邊AC,E是公共邊上一點.
(1)已知:AB=AD,BE=DE. 求證:△ABC≌△ADC.
(2)已知:∠1=∠2,∠3=∠4.求證:∠5=∠6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,點D、E分別是邊BC、AC的中點,過點A作AF∥BC交DE的延長線于F點,連接CF.
(1)求證:四邊形ABDF是平行四邊形;
(2)若∠CAF=45°,BC=4,CF=,求△CAF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,正邊形的一個內(nèi)角為,則邊數(shù)的值是               .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰△ABC的兩邊長分別是2和5,則△ABC的周長是(    )
A.9B.9或12
C.12D.7或12

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下面關于直角三角形的全等的判定,不正確的是(      ).
A.有一銳角和一邊對應相等的兩個直角三角形全等
B.有兩邊對應相等的兩個直角三角形全等
C.有兩角對應相等,且有一條公共邊的兩個直角三角形全等
D.有兩角和一邊對應相等的兩個直角三角形全等

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是       (把所有正確結(jié)論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

查看答案和解析>>

同步練習冊答案