【題目】在棋盤中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個軸對稱圖形,請在圖中畫出該圖形的對稱軸;
(2)在其他格點位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個軸對稱圖形,請直接寫出棋子P的位置的坐標(biāo).(寫出2個即可)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“經(jīng)典閱讀”活動中,某學(xué)校為了解全校學(xué)生利用課外時間閱讀的情況,學(xué)校團委隨機抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計表.根據(jù)圖表信息,解答下列問題:
頻率分布表
閱讀時間(小時) | 頻數(shù)(人) | 頻率 |
1≤x<2 | 18 | 0.12 |
2≤x<3 | a | m |
3≤x<4 | 45 | 0.3 |
4≤x<5 | 36 | n |
5≤x<6 | 21 | 0.14 |
合計 | b | 1 |
(1)填空:a= ,b= ,m= ,n= ;
(2)將頻數(shù)分布直方圖補充完整(畫圖后請標(biāo)注相應(yīng)的頻數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察圖形:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形_________________;
②線段AF與線段CE的數(shù)量關(guān)系是_________________;
(2)問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
(3)拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.
求證:DF=2CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)x2﹣4x+4=0
(2)x(x﹣2)=3(x﹣2)
(3)(2y﹣1)2﹣4=0
(4)(2x+1)(x﹣3)=0
(5)x2+5x+3=0
(6)x2﹣6x+1=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邵陽市到長沙的高鐵列車?yán)锍瘫绕湛炝熊嚴(yán)锍炭s短了75千米,運行時間減少了4小時,已知邵陽市到長沙的普快列車?yán)锍虨?/span>306千米,高鐵列車平均時速是普快列車平均時速的3.5倍.
(1)求高鐵列車的平均時速;
(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會議,如果他買到當(dāng)日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準(zhǔn)點到達(dá)的情況下他能在開會之前趕到嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.
(1)如圖1,在半對角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;
(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點D,使得BD=BO.∠OBA的平分線交OA于點E,連結(jié)DE并延長交AC于點F,∠AFE=2∠EAF.
求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點D作DG⊥OB于點H,交BC于點G.當(dāng)DH=BG時,求△BGH與△ABC的面積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com