【題目】(1)當a≠0時,求的值.(寫出解答過程)

(2)若a≠0,b≠0,且+ =0,則的值為   

(3)若ab>0,則++的值為   

【答案】(1)1或-1;(2)﹣1;(3)3或﹣1.

【解析】

(1)當a≠0時,可能a>0.也可能a<0,所以需要分兩種情況解答。

(2),因為兩個式子的和為0,所以兩個加數(shù)互為相反數(shù),a、b是異號.

(3)需要分a、b同號和異號兩種情況解答.

解:(1)當a>0時,|a|=a,則原式=1;

a<0時,|a|=﹣a,則原式=﹣1;

(2)∵a≠0,b≠0,且+=0,

∴ab異號,即ab<0,

∴|ab|=﹣ab,

則原式=﹣1;

(3)∵ab>0,

∴ab同號,

a>0,b>0時,原式=1+1+1=3;

a<0,b<0時,原式=﹣1﹣1+1=﹣1.

故答案為:(2)﹣1;(3)3或﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,點D為邊BC的中點,點M為邊AB上的一動點,點N為邊AC上的一動點,且∠MDN=90°,則cos∠DMN為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國幾家銀行的標志,其中即是軸對稱圖形又是中心對稱圖形的有( )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對角線.重疊部分為四邊形DHBG,

(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;
(2)若AB=8,AD=4,求四邊形DHBG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點,⊙C的“完美點”的定義如下:若直線CP與⊙C交于點A,B,滿足|PA﹣PB|=2,則稱點P為⊙C的“完美點”,如圖為⊙C及其“完美點”P的示意圖.

(1)當⊙O的半徑為2時,
①點M( ,0)⊙O的“完美點”,點N(0,1)⊙O的“完美點”,點T(﹣ ,﹣ ⊙O的“完美點”(填“是”或者“不是”);
②若⊙O的“完美點”P在直線y= x上,求PO的長及點P的坐標;
(2)⊙C的圓心在直線y= x+1上,半徑為2,若y軸上存在⊙C的“完美點”,求圓心C的縱坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】羅山西亞麗寶超市第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表:注:獲利售價進價

進價

20

30

售價

29

40

羅山西亞麗寶超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

該購物中心第二次以第一次的進價又購進甲、乙兩種商品其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,點A的坐標為(0,1),取一點B(b,0),連接AB,做線段AB的垂直平分線l1 , 過點B作x軸的垂線l2 , 記l1 , l2的交點為P.

(1)當b=3時,在圖1中補全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點P,并把這些點用平滑的曲線連接起來發(fā)現(xiàn):這些點P竟然在一條曲線L上!
①設(shè)點P的坐標為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線;
②設(shè)點P到x軸,y軸的距離分別是d1 , d2 , 求d1+d2的范圍,當d1+d2=8時,求點P的坐標;
③將曲線L在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點QE、F分別在BC、ABAC上(點E與點A、點B均不重合).

(1)當AE=8時,求EF的長;

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

x為何值時,y有最大值,最大值是多少?

(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設(shè)運動時間為t秒(0<t≤5).線段CM的長度記作y , 線段BP的長度記作y , y和y關(guān)于時間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點M的運動速度是每秒cm,當t為何值時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是;
(2)設(shè)四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說明理由;
(4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案