【題目】教師辦公室有一種可以自動(dòng)加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機(jī)自動(dòng)停止加熱,水溫開始下降,水溫y()和通電時(shí)間x(min)成反比例函數(shù)關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過程.設(shè)某天水溫和室溫均為20 ℃,接通電源后,水溫y()和通電時(shí)間x(min)之間的關(guān)系如圖所示,回答下列問題:

(1)分別求出當(dāng)0x88xa時(shí),yx之間的函數(shù)關(guān)系式;

(2)求出圖中a的值;

(3)李老師這天早上730將飲水機(jī)電源打開,若他想在810上課前喝到不低于40 ℃的開水,則他需要在什么時(shí)間段內(nèi)接水?

【答案】1)當(dāng)0x8時(shí),y10x20;當(dāng)8xa時(shí),y;(2a40;(3)要想喝到不低于40℃的開水,x需滿足8x20,即李老師要在738750之間接水.

【解析】試題分析:(1)當(dāng)0x8時(shí),設(shè)yk1xb,(0,20),(8,100)的坐標(biāo)分別代入yk1xb,即可求得k1、b的值,從而得一次函數(shù)的解析式;當(dāng)8xa時(shí),設(shè)y,(8,100)的坐標(biāo)代入y,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y20代入反比例函數(shù)的解析式,即可求得a值;(3)把y40代入反比例函數(shù)的解析式,求得對(duì)應(yīng)x的值,根據(jù)想喝到不低于40 ℃的開水,結(jié)合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時(shí)間范圍.

試題解析:

(1)當(dāng)0x8時(shí),設(shè)yk1xb,

(0,20)(8,100)的坐標(biāo)分別代入yk1xb,可求得k110,b20.

∴當(dāng)0x8時(shí),y10x20.

當(dāng)8xa時(shí),設(shè)y,

(8,100)的坐標(biāo)代入y,

k2800.

∴當(dāng)8<xa時(shí),y.

綜上,當(dāng)0x8時(shí),y10x20;

當(dāng)8xa時(shí),y.

(2)y20代入y,

解得x40,即a40.

(3)當(dāng)y40時(shí),x20.

∴要想喝到不低于40 ℃的開水,x需滿足8x20,即李老師要在738750之間接水.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個(gè)“回形”正方形(如圖2).

(1)圖2中的陰影部分的面積為  ;

(2)觀察圖2請(qǐng)你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;

(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y=  ;

(4)實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個(gè)因式分解的等式 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球;乙盒中裝有三個(gè)球,分別為兩個(gè)綠球和一個(gè)紅球;丙盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球,從三個(gè)盒子中各隨機(jī)取出一個(gè)小球

(1)請(qǐng)畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果

(2)請(qǐng)直接寫出事件取出至少一個(gè)紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A0,2)在y軸上,點(diǎn)Bx軸上,作∠BAC90°,并使ABAC

1)如圖1,若點(diǎn)B的坐標(biāo)為(﹣3,0),求點(diǎn)C的坐標(biāo).

2)如圖2,若點(diǎn)B的坐標(biāo)為(﹣4,0),連接BCy軸于點(diǎn)DACx軸于點(diǎn)E,連接DE,求證:BEAD+DE

3)在(1)的條件下,如圖3,F為(40),作∠FAG90°,并使AFAG,連接GCy軸于點(diǎn)H,求點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BCD點(diǎn),E、F分別為DB、DC的中點(diǎn),則圖中共有全等三角形 對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB,BC分別為線段,CD為雙曲線的一部分):

(1)分別求出線段AB和曲線CD的函數(shù)關(guān)系式;

(2)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(3)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·赤峰)為有效開發(fā)海洋資源,保護(hù)海洋權(quán)益,我國對(duì)南海諸島進(jìn)行了全面調(diào)查.如圖,一測(cè)量船在A島測(cè)得B島在北偏西30°方向,C島在北偏東15°方向,航行100海里到達(dá)B島,在B島測(cè)得C島在北偏東45°,求B,C兩島及AC兩島的距離.(結(jié)果保留到整數(shù), ≈1.41, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)連接在一起的菱形的邊長都是1cm,一只電子甲蟲從點(diǎn)A開始按ABCDAEFGAB…的順序沿菱形的邊循環(huán)爬行,當(dāng)電子甲蟲爬行2014cm時(shí)停下,則它停的位置是(   )

A. 點(diǎn)F B. 點(diǎn)E C. 點(diǎn)A D. 點(diǎn)C

查看答案和解析>>

同步練習(xí)冊(cè)答案