如圖,有兩個重合的直角三角形.將其中一個直角三角形△ABC沿BC方向平移得△DEF.如果AB=8cm,BE=3cm,DH=2cm,則圖中陰影部分面積為    cm2
【答案】分析:根據(jù)平移的性質(zhì)有:DE=AB;BE=CF;CH∥DF.根據(jù)已知可求EH;由平行線分線段成比例定理可求EC.從而可計算△EFD和△ECH的面積.陰影部分面積等于二者之差.
解答:解:根據(jù)題意得,DE=AB=8;BE=CF=3;CH∥DF.
∴EH=8-2=6;
EH:HD=EC:CF,即 6:2=EC:3,
∴EC=9.
∴S△EFD=×8×(9+3)=48;
S△ECH=×6×9=27.
∴S陰影部分=48-27=21(cm2).
故答案為 21.
點評:此題考查平移的性質(zhì)、相似三角形的判定與性質(zhì)及有關(guān)圖形的面積計算,有一定的綜合性.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點.
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設(shè)運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖2).
探究1:在運動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
探究2:設(shè)在運動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

1、(1)如圖,平面內(nèi)兩條互相
垂直
并且原點
重合
數(shù)軸
組成平面直角坐標系.其中,水平的數(shù)軸稱為
x軸
橫軸
,習慣上取
向右方向
為正方向;豎直的數(shù)軸稱為
y軸
縱軸
,取
向上方向
為正方向;兩坐標軸的交點叫做平面直角坐標系的
原點
.直角坐標系所在的
平面
叫做坐標平面.

(2)有了平面直角坐標系,平面內(nèi)的點就可以用一個
有序數(shù)對
來表示.如果有序數(shù)對(a,b)表示坐標平面內(nèi)的點A,那么有序數(shù)對(a,b)叫做
A點的坐標
.其中,a叫做A點的
橫坐標
;b叫做A點的
縱坐標

(3)建立了平面直角坐標系以后,坐標平面就被
兩條坐標軸
分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,如圖所示,分別叫做
第一象限
第二象限
、
第三象限
、
第四象限
.注意
坐標軸上的點
不屬于任何象限.

(4)坐標平面內(nèi),點所在的位置不同,它的坐標的符號特征如下:(請用“+”、“-”、“0”分別填寫)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•荊州二模)如圖①,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一個等腰梯形DEFG(GF‖DE)的底邊DE與BC重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點,P點為AG上的一動點.
(1)填空:等腰梯形DEFG的面積為
6
6

(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設(shè)運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖②).
探究1:設(shè)在運動過程中△ABC與等腰梯形DEF′G′重疊部分的面積為y,直接寫出y與x的函數(shù)關(guān)系式和自變量x的取值范圍;
探究2:在運動過程中,四邊形BDG′G能否是菱形?若能,設(shè)過動點P且平分此菱形面積的直線交GF于去,當S△PGQ=
2
8
時,求P點的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•呼倫貝爾)如圖①,在平面直角坐標系內(nèi),Rt△ABC≌Rt△FED,點C、D與原點O重合,點A、F在y軸上重合,∠B=∠E=30°,AC=FD=
3
.△FED不動,△ABC沿直線BE以每秒1個單位的速度向右平移,直到點B與點E重合為止,設(shè)移動x秒后兩個三角形重疊部分的面積為s.

(1)求出圖①中點B的坐標;
(2)如圖②,當x=4秒時,點M坐標為(2,
3
3
),求出過F、M、A三點的拋物線的解析式;此拋物線上有一動點P,以點P為圓心,以2為半徑的⊙P在運動過程中是否存在與y軸相切的情況?若存在,直接寫出P點的坐標;若不存在,請說明理由.
(3)求出整個運動過程中s與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點.
(1)填空:GF的長度為
2
2
2
2
,等腰梯形DEFG的面積為
6
6

(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設(shè)運動時間為x秒,運動后的等腰梯形為DEF’G’(如圖2)
探究:在運動過程中,四邊形BDG’G能否為菱形?若能,請求出此時x的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案