【題目】在平面直角坐標(biāo)系中,,,將線段沿軸的正方向平移個(gè)單位,得到線段,恰好都落在反比例函數(shù)的圖象上.
(1)用含的代數(shù)式表示點(diǎn),的坐標(biāo);
(2)求的值和反比例函數(shù)的表達(dá)式;
(3)點(diǎn)為反比例函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),直線與軸交于點(diǎn),若,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
【答案】(1); ;(2)n=6;;(3)點(diǎn)的坐標(biāo)為或.
【解析】
(1)利用平移的性質(zhì),可用含的代數(shù)式表示點(diǎn),的坐標(biāo);
(2)根據(jù)點(diǎn),的坐標(biāo),利用待定系數(shù)法可得出關(guān)于,的方程組,解之即可得出結(jié)論;
(3)過(guò)點(diǎn)作軸于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),則,利用相似三角形的性質(zhì)可得出的值,再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)的坐標(biāo).
(1)∵點(diǎn)沿軸的正方向平移個(gè)單位得到點(diǎn),
∴點(diǎn)的坐標(biāo)為.
同理,可得出:點(diǎn)的坐標(biāo)為.
(2)將,代入,得:
,解得:,
∴的值為6,反比例函數(shù)的表達(dá)式為.
(3)過(guò)點(diǎn)作軸于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn)F,如圖所示.
∵,
∴,
∴,即,
∴.
當(dāng)時(shí),,
此時(shí)點(diǎn)的坐標(biāo)為;
當(dāng)時(shí),,
此時(shí)點(diǎn)的坐標(biāo)為.
綜上所述:點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)傳統(tǒng)文化,提高學(xué)生文明意識(shí),育紅學(xué)校組織全校80個(gè)班級(jí)進(jìn)行“誦經(jīng)典,傳文明”演講賽,比賽后對(duì)各班成績(jī)進(jìn)行了整理,分成4個(gè)小組(x表示成績(jī),單位:分):A組:60≤x<70;B組:70≤x<80;C組:80≤x<90;D組:90≤x<100,并且繪制了如右不完整的扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求扇形統(tǒng)計(jì)圖中,B組對(duì)應(yīng)的圓心角是多少度?
(2)學(xué)校從D組中選取了2名男生和2名女生組成代表隊(duì)參加了區(qū)級(jí)比賽,由于表現(xiàn)突出,被要求再?gòu)倪@4名學(xué)生中隨機(jī)選取兩名同學(xué)參加市級(jí)比賽,請(qǐng)用列表或畫樹(shù)狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,分別沿長(zhǎng)方形紙片ABCD和正方形紙片EFGH的對(duì)角線AC,EG剪開(kāi),拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小華設(shè)計(jì)的“作一個(gè)角等于已知角的2倍”的尺規(guī)作圖過(guò)程.
已知:.
求作:,使得.
作法:如圖,
①在射線上任取一點(diǎn);
②作線段的垂直平分線,交于點(diǎn),交于點(diǎn);
③連接;
所以即為所求作的角.
根據(jù)小華設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī)補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明(說(shuō)明:括號(hào)里填寫推理的依據(jù)).
證明:∵是線段的垂直平分線,
∴______(______)
∴.
∵(______)
∴.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與反比例函數(shù)的圖象相交于點(diǎn).
(1)求a、k的值;
(2)直線x=b()分別與一次函數(shù)y=x、反比例函數(shù)的圖象相交于點(diǎn)M、N,當(dāng)MN=2時(shí),畫出示意圖并直接寫出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明為今年將要參加中考的好友小李制作了一個(gè)(如圖)正方體禮品盒,六面上各有一字,連起來(lái)就是“預(yù)祝中考成功”,其中“預(yù)”的對(duì)面是“中”,“成”的對(duì)面是“功”,則它的平面展開(kāi)圖可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)為了實(shí)現(xiàn)到2020年達(dá)到全面小康社會(huì)的目標(biāo),近幾年加大了扶貧工作的力度,合肥市某知名企業(yè)為了幫助某小型企業(yè)脫貧,投產(chǎn)一種書(shū)包,每個(gè)書(shū)包制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)個(gè))與銷售單價(jià)x(元)之間的關(guān)系可以近似看作一次函數(shù)y=kx+b,據(jù)統(tǒng)計(jì)當(dāng)售價(jià)定為30元/個(gè)時(shí),每月銷售40萬(wàn)個(gè),當(dāng)售價(jià)定為35元/個(gè)時(shí),每月銷售30萬(wàn)個(gè).
(1)請(qǐng)求出k、b的值.
(2)寫出每月的利潤(rùn)w(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)解析式.
(3)該小型企業(yè)在經(jīng)營(yíng)中,每月銷售單價(jià)始終保持在25≤x≤36元之間,求該小型企業(yè)每月獲得利潤(rùn)w(萬(wàn)元)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD是半圓O的直徑,A是BD延長(zhǎng)線上的一點(diǎn),BC⊥AE,交AE的延長(zhǎng)線于點(diǎn)C,交半圓O于點(diǎn)E,且E為的中點(diǎn).
(1)求證:AC是半圓O的切線;
(2)若AD=6,AE=6,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com