【題目】已知,如圖,ABCD中,BE,CF分別是∠ABC和∠BCD的角平分線,BE,CF相交于點(diǎn)O.
(1)求證:BE⊥CF;
(2)試判斷AF與DE有何數(shù)量關(guān)系,并說明理由;
(3)當(dāng)△BOC為等腰直角三角形時(shí),四邊形ABCD是何特殊四邊形?(直接寫出答案)
【答案】(1)見解析;(2)AF=DE,理由略;(3)四邊形ABCD是矩形.
【解析】
(1)平行四邊形中鄰角互補(bǔ),且BE、CF分別為一組鄰角的平分線,所以BE和CF垂直.
(2)在三角形AEB中,因?yàn)?/span>BE為平分線,AD和BC平行,所以可得∠ABE=∠AEB,即AB=AE,同理,DF=DC,所以AF=DE.
(3)當(dāng)△BOC為等腰直角三角形時(shí),即∠BOC=90°,由題可知,∠ABC=∠BCD=90°,有一個(gè)角是直角的平行四邊形為矩形.
(1)證明:∵四邊形ABCD是平行四邊形
∴AB∥CD
∴∠ABC+∠BCD=180°
又∵BE,CF分別是∠ABC,∠BCD的平分線
∴∠EBC+∠FCB=90°
∴∠BOC=90°
故BE⊥CF;
(2)解:AF=DE
理由如下:
∵AD∥BC
∴∠AEB=∠CBE
又∵BE是∠ABC的平分線,
∴∠ABE=∠CBE
∴∠AEB=∠ABE
∴AB=AE
同理CD=DF
又∵四邊形ABCD是平行四邊形
∴AB=CD
∴AE=DF
∴AF=DE.
(3)解:當(dāng)△BOC為等腰直角三角形時(shí)四邊形ABCD是矩形.
理由:∵△BOC為等腰直角三角形,
∴∠BOC=90°,∠CBE=∠BCF=45°,
∵BE,CF分別是∠ABC和∠BCD的角平分線,
∴∠ABC=∠BCD=90°,
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對(duì)銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系如圖1所示,櫻桃價(jià)格z(單位:元/千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系式如圖2所示.
(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求小明家櫻桃的日銷售量y與上市時(shí)間x的函數(shù)解析式;
(3)試比較第10天與第12天的銷售金額哪天多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐活動(dòng)小組要測(cè)量旗桿的高度,現(xiàn)有標(biāo)桿、皮尺.小明同學(xué)站在旗桿一側(cè),通過觀視和其他同學(xué)的測(cè)量,求出了旗桿的高度,請(qǐng)完成下列問題:
(1)小明的站點(diǎn),旗桿的接地點(diǎn),標(biāo)桿的接地點(diǎn),三點(diǎn)應(yīng)滿足什么關(guān)系?
(2)在測(cè)量過程中,如果標(biāo)桿的位置確定,小明應(yīng)該通過移動(dòng)位置,直到小明的視點(diǎn)與點(diǎn) 在同直一線上為止;
(3)他們都測(cè)得了哪些數(shù)據(jù)就能計(jì)算出旗桿的高度?請(qǐng)你用小寫字母表示這些數(shù)據(jù)(不允許測(cè)量多余的數(shù)據(jù));
(4)請(qǐng)用(3)中的數(shù)據(jù),直接表示出旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張長(zhǎng)方形紙片的長(zhǎng)為m,寬為n(m>3n)如圖1,先在其兩端分別折出兩個(gè)正方形(ABEF、CDGH)后展開(如圖2),再分別將長(zhǎng)方形ABHG、CDFE對(duì)折,折痕分別為MN、PQ(如圖3),則長(zhǎng)方形MNQP的面積為( 。
A.n2B.n(m﹣n)C.n(m﹣2n)D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)E,射線EG在∠AEC內(nèi)(如圖1).
(1)若∠BEC的補(bǔ)角是它的余角的3倍,則∠BEC= 度;
(2)在(1)的條件下,若∠CEG比∠AEG小25度,求∠AEG的大小;
(3)若射線EF平分∠AED,∠FEG=100°(如圖2),則∠AEG-∠CEG= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點(diǎn)O是對(duì)角線DB的中點(diǎn),點(diǎn)P是DB所在直線上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測(cè)AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P在DB的長(zhǎng)延長(zhǎng)線上時(shí),請(qǐng)將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請(qǐng)寫出相應(yīng)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購(gòu)買乙種樹苗的棵數(shù)恰好與用360元購(gòu)買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購(gòu)買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購(gòu)買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購(gòu)買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購(gòu)買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,并且滿足.一動(dòng)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng);動(dòng)點(diǎn)從點(diǎn)出發(fā)在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)分別從點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒)
(1)求兩點(diǎn)的坐標(biāo);
(2)當(dāng)為何值時(shí),四邊形是平行四邊形?并求出此時(shí)兩點(diǎn)的坐標(biāo).
(3)當(dāng)為何值時(shí),是以為腰的等腰三角形?并求出此時(shí)兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2﹣mx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com