【題目】已知反比例函數(shù)y= (k≠0)的圖象經(jīng)過(guò)(3,﹣1),則當(dāng)1<y<3時(shí),自變量x的取值范圍是

【答案】﹣3<x<﹣1
【解析】解:∵反比例函數(shù)y= (k≠0)的圖象經(jīng)過(guò)(3,﹣1),
∴k=3×(﹣1)=﹣3,
∴反比例函數(shù)的解析式為y= .∵反比例函數(shù)y= 中k=﹣3,
∴該反比例函數(shù)的圖象經(jīng)過(guò)第二、四象限,且在每個(gè)象限內(nèi)均單增.
當(dāng)y=1時(shí),x= =﹣3;當(dāng)y=3時(shí),x= =﹣1.
∴1<y<3時(shí),自變量x的取值范圍是﹣3<x<﹣1.
所以答案是:﹣3<x<﹣1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握性質(zhì):當(dāng)k>0時(shí)雙曲線(xiàn)的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線(xiàn)的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1 , y1),B(x2 , y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )

A.y1<y2
B.y1>y2
C.y的最小值是﹣3
D.y的最小值是﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知線(xiàn)段AB=12cm,點(diǎn)C為線(xiàn)段AB上的一動(dòng)點(diǎn),點(diǎn)DE分別是ACBC中點(diǎn).

1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm

2)若AC=4cm,求DE的長(zhǎng);

3)試說(shuō)明無(wú)論AC取何值(不超過(guò)12cm),DE的長(zhǎng)不變;

4)如圖②,已知∠AOB=120°,過(guò)角的內(nèi)部任一點(diǎn)C畫(huà)射線(xiàn)OC.OD,OE分別平分∠AOC和∠BOC.試說(shuō)明∠DOE的度數(shù)與射線(xiàn)OC的位置無(wú)關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線(xiàn)AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線(xiàn)與對(duì)角線(xiàn)BD所在直線(xiàn)交于點(diǎn)G,連接AG,直線(xiàn)AG交BE于點(diǎn)H.

(1)如圖1,當(dāng)點(diǎn)E、F在線(xiàn)段AD上時(shí),求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說(shuō)明HO平分∠BHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過(guò)點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)多面體的表面展開(kāi)圖,每個(gè)面上都標(biāo)注了字母(字母在多面體的外表面),請(qǐng)根據(jù)要求回答問(wèn)題.

(1)如果D面在多面體的左面,那么F面在哪里?

(2)B面和哪一面是相對(duì)的面?

(3)如果C面在前面,從上面看到的是D,那么從左面能看到哪一面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)BD上有一點(diǎn)C,則:

(1)1和∠ABC是直線(xiàn)AB,CE被直線(xiàn)_____所截得的____角;

(2)2和∠BAC是直線(xiàn)CE,AB被直線(xiàn)____所截得的_____角;

(3)3和∠ABC是直線(xiàn)_____、_____被直線(xiàn)_____所截得的____角;

(4)ABC和∠ACD是直線(xiàn)____、_____被直線(xiàn)_____所截得的角;

(5)ABC和∠BCE是直線(xiàn)___________被直線(xiàn)所截得的_____角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料,解答后面給出的問(wèn)題:

兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說(shuō)這兩個(gè)代數(shù)式互為有理化因式,例如+1-1.

(1)請(qǐng)你再寫(xiě)出兩個(gè)含有二次根式的代數(shù)式,使它們互為有理化因式:__________________;

這樣,化簡(jiǎn)一個(gè)分母含有二次根式的式子時(shí),采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,.

(2)請(qǐng)仿照上面給出的方法化簡(jiǎn):

(3)計(jì)算:.

查看答案和解析>>

同步練習(xí)冊(cè)答案