【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
【答案】
(1)證明:如圖,連接OE.
∵CD是圓O的直徑,
∴∠CED=90°.
∵OC=OE,
∴∠1=∠2.
又∵∠PED=∠C,即∠PED=∠1,
∴∠PED=∠2,
∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,
∴OE⊥EP,
又∵點E在圓上,
∴PE是⊙O的切線;
(2)證明:∵AB、CD為⊙O的直徑,
∴∠AEB=∠CED=90°,
∴∠3=∠4(同角的余角相等).
又∵∠PED=∠1,
∴∠PED=∠4,
即ED平分∠BEP;
(3)解:設EF=x,則CF=2x,
∵⊙O的半徑為5,
∴OF=2x﹣5,
在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,
解得x=4,
∴EF=4,
∴BE=2EF=8,CF=2EF=8,
∴DF=CD﹣CF=10﹣8=2,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∵AB=10,BE=8,
∴AE=6,
∵∠BEP=∠A,∠EFP=∠AEB=90°,
∴△AEB∽△EFP,
∴ = ,即 = ,
∴PF= ,
∴PD=PF﹣DF= ﹣2= .
【解析】(1)如圖,連接OE.欲證明PE是⊙O的切線,只需推知OE⊥PE即可;(2)由圓周角定理得到∠AEB=∠CED=90°,根據(jù)“同角的余角相等”推知∠3=∠4,結合已知條件證得結論;(3)設EF=x,則CF=2x,在RT△OEF中,根據(jù)勾股定理得出52=x2+(2x﹣5)2 , 求得EF=4,進而求得BE=8,CF=8,在RT△AEB中,根據(jù)勾股定理求得AE=6,然后根據(jù)△AEB∽△EFP,得出 = ,求得PF= ,即可求得PD的長.
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有人;
(2)請你將條形統(tǒng)計圖補充完成;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)問題進行證明:
(1)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P,求證:AP=BQ.
(2)如圖,已知AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D且∠A=∠D.求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,tanA= ,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,給出如下幾個結論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結論的序號為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,CD=1,∠DBC=30°.若將BD繞點B旋轉后,點D落在DC延長線上的點E處,點D經(jīng)過的路徑 ,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. ﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=4,射線BM和AB互相垂直,點D是AB上的一個動點,點E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結AF并延長交射線BM于點C.設BE=x,BC=y,則y關于x的函數(shù)解析式是( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小宇想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】校文藝部在全校范圍內隨機抽取一部分同學,對同學們喜愛的四種“明星真人秀”節(jié)目進行問卷調查(每位同學只能選擇一種最喜愛的節(jié)目),并將調查結果整理后分別繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖).
請根據(jù)所給信息回答下列問題:
(1)本次問卷調查共調查了多少名學生?
(2)請將兩幅統(tǒng)計圖補充完整;
(3)若該校有1500名學生,據(jù)此估計有多少名學生最喜愛《奔跑吧兄弟》節(jié)目.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com