【題目】如圖,在矩形ABCD中,CD=1,∠DBC=30°.若將BD繞點B旋轉(zhuǎn)后,點D落在DC延長線上的點E處,點D經(jīng)過的路徑 ,則圖中陰影部分的面積是(
A.
B.
C.
D.

【答案】B
【解析】解:∵四邊形ABCD是矩形, ∴∠BCD=90°,
∵CD=1,∠DBC=30°,
∴BD=2CD=2,
由勾股定理得BC= = ,
∵將BD繞點B旋轉(zhuǎn)后,點D落在BC延長線上的點E處,
∴BE=BD=2,
∵S扇形DBE= = = ,
SBCD= BCCD= = ,
∴陰影部分的面積=S扇形DBE﹣SBCD=
故選B.
【考點精析】本題主要考查了扇形面積計算公式的相關(guān)知識點,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】首條貫通絲綢之路經(jīng)濟(jì)帶的高鐵線﹣﹣寶蘭客專進(jìn)入全線拉通試驗階段,寶蘭客專的通車對加快西北地區(qū)與“一帶一路”沿線國家和地區(qū)的經(jīng)貿(mào)合作、人文交流具有十分重要的意義,試運行期間,一列動車從西安開往西寧,一列普通列車從西寧開往西安,兩車同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行一下探究:

(1)西寧到西安兩地相距千米,兩車出發(fā)后小時相遇;
(2)普通列車到達(dá)終點共需小時,普通列車的速度是千米/小時.
(3)求動車的速度;
(4)普通列車行駛t小時后,動車到達(dá)終點西寧,求此時普通列車還需行駛多少千米到達(dá)西安?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,∠DAB=60°,連接對角線AC,以AC為邊作第二個ACC1D1 , 使∠D1AC=60°;連接AC1 , 再以AC1為邊作第三個菱形AC1C2D2 , 使∠D2AC1=60°;…,按此規(guī)律所作的第2017個菱形的邊長為(
A.( 2016
B.( 2016
C.22017
D.( 2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的橫坐標(biāo)、縱坐標(biāo)的實際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y= x+1與x軸交于點A,且與雙曲線y= 的一個交點為B( ,m).
(1)求點A的坐標(biāo)和雙曲線y= 的表達(dá)式;
(2)若BC∥y軸,且點C到直線y= x+1的距離為2,求點C的縱坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,那么BM的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.

(1)求證:PC是⊙O的切線;
(2)若PD=,AC=8,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是的中點,連接CE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸于H,過點C作CF⊥l于F.

(1)求拋物線解析式;
(2)如圖2,當(dāng)點F恰好在拋物線上時,求線段OD的長;
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案