【題目】在全國初中數(shù)學聯(lián)賽中,將參賽兩個班學生的成績(得分均為整數(shù))進行整理后分成五組,繪制出如下的頻率分布直方圖(如圖所示),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是025、015、010010,第二組的頻數(shù)是40

1)第二小組的頻率是_____,并補全這個頻率分布直方圖;

2)這兩個班參賽的學生人數(shù)是_________;

3)這兩個班參賽學生的成績的中位數(shù)落在第______組內(nèi).(不必說明理由)

【答案】0.4 100

【解析】

11減去其余各組頻率即可;
2)第二組頻數(shù)除以第二組頻率;
3)由第一、二組頻率之和為0.25+0.4=0.650.5知前兩組的人數(shù)之和超過半數(shù),根據(jù)中位數(shù)的定義求解可得.

解:(1)第二小組頻率為1-0.25+0.15+0.10+0.10=0.4
第二組小矩形的高度應(yīng)為第五組的4倍,如圖:

故答案為:0.4;
2)這兩個班參賽的學生人數(shù)是40÷0.4=100人,
故答案為:100;
3)∵第一、二組頻率之和為0.25+0.4=0.650.5,
∴中位數(shù)落在第二小組,
故答案為:二.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,其中,與軸交于點,拋物線的對稱軸交軸于點,直線經(jīng)過點,,連接

1)求拋物線和直線的解析式:

2)若拋物線上存在一點,使的面積是面積的2倍,求點的坐標;

3)在拋物線的對稱軸上是否存在一點,使線段點順時針旋轉(zhuǎn)得到線段,且恰好落在拋物線上?若存在,求出點的坐標;若不存在,請說叫理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鍛煉學生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點為矩形的中點,在矩形的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員從點出發(fā),沿著的路線勻速行進,到達點.設(shè)運動員的運動時間為,到監(jiān)測點的距離為.現(xiàn)有的函數(shù)關(guān)系的圖象大致如圖所示,則這一信息的來源是( ).

A. 監(jiān)測點 B. 監(jiān)測點 C. 監(jiān)測點 D. 監(jiān)測點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境

數(shù)學活動課上,老師讓同學們根據(jù)如下問題情境,發(fā)現(xiàn)并提出問題.

如圖1,ABCEDC都是等腰直角三角形,點E,D分別在ACBC上,連接EB.將線段EB繞點B順時針旋轉(zhuǎn)90°,得到的對應(yīng)線段為BF.連接DF.“興趣小組”提出了如下兩個問題:①AE=BD,AEBD;②DF=AB,DFAB

解決問題:

1)請你證明“興趣小組”提出的第②個問題.

探索發(fā)現(xiàn):

2)“實踐小組”在圖1的基礎(chǔ)上,將EDC繞點C順時針旋轉(zhuǎn)角度90°),其它條件保持不變,得到圖2

①請你幫助“實踐小組”探索:“興趣小組”提出的兩個問題是否還成立?如果成立,請給出證明;若不成立,請說明理由.

②如圖3,當AD=AF時,請求出此時旋轉(zhuǎn)角α的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在北京市開展的首都少年先鋒崗活動中,某數(shù)學小組到人民英雄紀念碑站崗執(zhí)勤,并在活動后實地測量了紀念碑的高度. 方法如下:如圖,首先在測量點A處用高為1.5m的測角儀AC測得人民英雄紀念碑MN頂部M的仰角為35°,然后在測量點B處用同樣的測角儀BD測得人民英雄紀念碑MN頂部M的仰角為45°,最后測量出AB兩點間的距離為15m,并且NB,A三點在一條直線上,連接CD并延長交MN于點E. 請你利用他們的測量結(jié)果,計算人民英雄紀念碑MN的高度.

(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8tan35°≈0.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫坐標、縱坐標都為整數(shù)的點稱為整點.請你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每個正方形四條邊上的整點的個數(shù).按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點共有______個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為

1)分別求出線段APCB的長;

2)如果OE=5,求證:DE⊙O的切線;

3)如果tan∠E=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形邊長為2,、分別是上兩動點,且滿足,于點

(1)如圖1,判斷線段的位置關(guān)系,并說明理由;

(2)在(1)的條件下,連接,直接寫出的最小值為 ;

(3)如圖2,點的中點,連接

①求證:平分;

②求線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的頂點坐標為A(﹣4,1),B(﹣2,3),C(﹣12).

1)畫出ABC關(guān)于原點O成中心對稱的ABC,點AB,C分別是點A,BC的對應(yīng)點.

2)求過點B的反比例函數(shù)解析式.

3)判斷AB的中點P是否在(2)的函數(shù)圖象上.

查看答案和解析>>

同步練習冊答案