【題目】如圖,在△ABC中,以AC邊為直徑作⊙OBC邊于點(diǎn)D,交AB于點(diǎn)G,且DBC中點(diǎn),DEAB,交AB于點(diǎn)E,交AC的延長(zhǎng)線交于點(diǎn)F.

(1)求證:直線EF是⊙O的切線.

(2)若CF=3,cosCAB=,求⊙O的半徑和線段BD的長(zhǎng).

【答案】(1)證明見解析;(2)O的半徑為,BD的長(zhǎng)為

【解析】

1)根據(jù)三角形的中位線定理證明ODAB可得ODEF,所以直線EF是⊙O的切線;

2)設(shè)⊙O的半徑為r,根據(jù)cosFOD=cosCAB=,求得r的值根據(jù)平行線分線段成比例定理得,可得AE的長(zhǎng)并計(jì)算BE的長(zhǎng),證明△BDE∽△BAD,代入可得BD的長(zhǎng).

1)證明連接OD

OA=OCDB=DC,ODAB

DEABODEF,∴直線EF是⊙O的切線

2)如圖,連接AD,設(shè)⊙O的半徑為r

RtODF中,∵cosFOD=cosCAB====,r=,AB=2DO=9

ODAB,,=AE=,BE=ABAE=9=

AC為⊙O的直徑,∴∠ADE+∠BDE=ADB=90°.

DEAB∴∠B+∠BDE=90°,∴∠ADE=B,∴△BDE∽△BAD,,BD2=ABBE,BD2=9×=,BD=,∴⊙O的半徑為,BD的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在創(chuàng)建全國(guó)文明城市過程中,決定購買A,B兩種樹苗對(duì)某路段道路進(jìn)行綠化改造,已知購買A種樹苗8棵,B種樹苗3棵,需要950元;若購買A種樹苗5棵,B種樹苗6棵,則需要800元.

(1)求購買A,B兩種樹苗每棵各需多少元?

(2)考慮到綠化效果和資金周轉(zhuǎn),購進(jìn)A種樹苗不能少于52棵,且用于購買這兩種樹苗的資金不能超過7650元,若購進(jìn)這兩種樹苗共100棵,則有哪幾種購買方案?

(3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問的各種購買方案中,種好這100棵樹苗,哪一種購買方案所付的種植工錢最少?最少工錢是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與,軸分別交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.動(dòng)點(diǎn),分別在線段上(點(diǎn)與點(diǎn),不重合),且滿足.

1)求點(diǎn),的坐標(biāo)及線段的長(zhǎng)度;

2)當(dāng)點(diǎn)在什么位置時(shí),,說明理由;

3)當(dāng)為等腰三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校開展的數(shù)學(xué)活動(dòng)課上,小明和小剛制作了一個(gè)正三樓錐(質(zhì)量均勻,四個(gè)面完全相同),并在各個(gè)面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請(qǐng)用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.

(2)請(qǐng)分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線”.

①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是直線y=﹣x上的動(dòng)點(diǎn),點(diǎn)B是x軸上的動(dòng)點(diǎn),若AB=2,則△AOB面積的最大值為( 。

A. 2 B. +1 C. -1 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:

,同號(hào);當(dāng)時(shí),函數(shù)值相等;;④當(dāng)時(shí),的值只能取;⑤當(dāng)時(shí),.其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,ADBC邊上的高,AE是∠BAC的平分線,若∠B=65°,C=45°,則∠DAE的度數(shù)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案