【題目】如圖,以的邊、為邊分別向外作和,且,,連接、、.
(1)求證:;
(2)試判斷與的面積之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)見解析;(2)與的面積相等,理由見解析
【解析】
(1)由三角形ABD與三角形ACE都為等腰直角三角形,利用等腰直角三角形的性質(zhì)及等式的性質(zhì)得到∠DAC=∠BAE,利用SAS可得出△DAC≌△BAE,得證;
(2)過點(diǎn)C作CM⊥AB于M,過點(diǎn)G作GN⊥EA交EA延長線于N,得出△ABC與△AEG的兩條高,等腰直角三角形的特殊性證明△ACM≌△AGN,得到,故可求解 .
解:(1)證明:和都是直角三角形,且,
,
即.
在和中,,
,
;
(2)與的面積相等.
理由如下:如解圖所示,過點(diǎn)作于點(diǎn),過點(diǎn)作交的延長線于點(diǎn),則,
,,
,
,
.
在和中,,
,.
,,.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎自行車,乙步行均從地出發(fā),以各自的速度勻速向地行駛,其中甲先出發(fā)到達(dá)地,停留分鐘后,按原路原速返回到地,乙則一直步行到地,如圖是甲乙兩人之間的距離米與甲用時(shí)之間的部分函數(shù)圖象.
(1)請(qǐng)直接寫出甲,乙兩人的速度,并將圖中的( 。﹥(nèi)填上正確的值;
(2)求甲從地返回到與乙相遇這段過程中,與之間的函數(shù)關(guān)系式;
(3)求乙在向地行駛過程中甲乙兩人相距米時(shí),甲所用時(shí)間及,兩地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一張矩形紙片ABCD,其中AB=4cm,BC=6cm,點(diǎn)E是BC的中點(diǎn).將紙片沿直線AE折疊,使點(diǎn)B落在梯形AECD內(nèi),記為點(diǎn)B′,那么B′、C兩點(diǎn)之間的距離是______ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請(qǐng)判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點(diǎn)F,且AF=DF.
(1)求證:四邊形ADCE是平行四邊形;
(2)當(dāng)AB、AC之間滿足 時(shí),四邊形ADCE是矩形;
(3)當(dāng)AB、AC之間滿足 時(shí),四邊形ADCE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) P 是∠AOB 內(nèi)部一定點(diǎn)
(1)若∠AOB=50°,作點(diǎn) P 關(guān)于 OA 的對(duì)稱點(diǎn) P1,作點(diǎn) P 關(guān)于 OB 的對(duì)稱點(diǎn) P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點(diǎn) C、D 分別在射線 OA、OB 上移動(dòng),當(dāng)△PCD 的周長最小時(shí),則∠CPD=___(用 α 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年4月20日,四川雅安發(fā)生里氏7.0級(jí)地震,救援隊(duì)救援時(shí),利用生命探測(cè)儀在某建筑物廢墟下方探測(cè)到點(diǎn)C處有生命跡象,已知廢墟一側(cè)地面上兩探測(cè)點(diǎn)A、B相距4米,探測(cè)線與地面的夾角分別為300和600,如圖所示,試確定生命所在點(diǎn)C的深度(結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com