(如圖),已知D是AB上一點(diǎn),E是AC上一點(diǎn),∠B+∠BDE=180°,∠C=70°.則∠AED=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,已知△PAC是圓O的內(nèi)接正三角形,那么∠OAC﹦
 
;
(2)如圖2,設(shè)AB是圓O的直徑,AC是圓的任意一條弦,∠OAC﹦α﹒
①如果α﹦45°,那么AC能否成為圓內(nèi)接正多邊形的一條邊?若有可能,那么此多邊形是幾邊形?請(qǐng)說(shuō)明理由﹒
②若AC是圓的內(nèi)接正n邊形的一邊,則用含n的代數(shù)式表示α應(yīng)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知AB是⊙O的直徑,AB垂直于弦CD,垂足為M,弦AE與CD交于F,則有結(jié)論AD2=AE•AF成立(不要求證明).
(1)若將弦CD向下平移至與O相切B點(diǎn)時(shí),如圖2,則AEAF是否等于AG2?如果不相等,請(qǐng)?zhí)角驛E•AF等于哪兩條線(xiàn)段的積并給出證明;
(2)當(dāng)CD繼續(xù)向下平移至與O相離時(shí),如圖3,在(1)中探求的結(jié)論是否還成立?并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解不等式
2x-1
3
5x+1
2
+1
,并把它的解集在數(shù)軸上(如圖1)表示出來(lái).
(2)如圖2,已知AB是⊙O的直徑,AP是⊙O的切線(xiàn),A是切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)D為AP的中點(diǎn).直線(xiàn)CD是⊙O的切線(xiàn)嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,AB為圓O的直徑,弦CD⊥AB,垂足為點(diǎn)E,連接OC,若AB=10,CD=8,求AE的長(zhǎng).
(2)如圖2,已知AD是△ABC的角平分線(xiàn),DE∥AC交AB于點(diǎn)E,DF∥AB交AC于點(diǎn)F.
求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,在平行四邊形ABCD中,E、F為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:①△ABF≌△DCE;②四邊形ABCD是矩形.
(2)如圖2,已知△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長(zhǎng)BC到E,使CE=CD.
①請(qǐng)用尺規(guī)作圖的方法,過(guò)點(diǎn)D作DM⊥BE,垂足為M;(不寫(xiě)作法,保留作圖痕跡)
②求證:BM=EM.

查看答案和解析>>

同步練習(xí)冊(cè)答案