精英家教網(wǎng)如圖,已知四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC,BD交于點(diǎn)E,求證:
AE
BE
=
AD
BC
分析:因?yàn)樗倪呅蜛BCD是圓內(nèi)接四邊形,可以得到角的關(guān)系證明△ADE∽△BCE,然后利用相似三角形的性質(zhì)就可以證明題目的結(jié)論.
解答:證明:在四邊形ABCD中,∠DAC=∠DBC,∠ADB=∠ACB,
∴△ADE∽△BCE,
AE
BE
=
AD
BC
點(diǎn)評(píng):此題比較簡(jiǎn)單,直接利用同弧上的圓周角相等就可以證明三角形相似,然后利用相似三角形的性質(zhì)就可以解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長(zhǎng)線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊(cè)答案