【題目】小王只帶2元和5元兩種面值的人民幣,他買一件學(xué)習(xí)用品要支付27元,則付款的方式有( 。

A. 1B. 2C. 3D. 4

【答案】C

【解析】

試題設(shè)付款時用了2x張,5y張。

則:2x+5y=27,xy只能取正整數(shù)。則當(dāng)y=1時,x=11;當(dāng)y=3時,x=6,當(dāng)y=5時,x=1。

故選C。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項式a2b﹣a3﹣b2+a按字母a的降冪排列為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)已知,如圖①,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E,求證:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角,請問結(jié)論DE=BD+CE是否成立?若成立,請你給出證明:若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在Rt△ABC中,∠C=90°, ∠B=30°,AC=1,CDAB,垂足為D,現(xiàn)將△ACDD點順時針旋轉(zhuǎn)得到△ACD, 旋轉(zhuǎn)時間為t秒,△ACDD點旋轉(zhuǎn)的角速度/秒(每秒轉(zhuǎn)10度) .

(1)旋轉(zhuǎn)時間t= 秒時,ACAB;

(2)△ACD繞D點順時針旋轉(zhuǎn)一周(3600),斜邊AC掃過的面積為

(3)如圖②,連接AC、 CB

①若6<t<9,求證: 為定值;

②當(dāng)t>9時,上述結(jié)論還成立嗎?如成立直接寫出比值,不成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在數(shù)軸上點, 所對應(yīng)的數(shù)是

對于關(guān)于的代數(shù)式,我們規(guī)定:當(dāng)有理數(shù)在數(shù)軸上所對應(yīng)的點為之間(包括點, )的任意一點時,代數(shù)式取得所有值的最大值小于等于,最小值大于等于,則稱代數(shù)式,是線段的封閉代數(shù)式.

例如,對于關(guān)于的代數(shù)式,當(dāng)時,代數(shù)式取得最大值是;當(dāng)時,代數(shù)式取得最小值是,所以代數(shù)式是線段的封閉代數(shù)式.

問題:()關(guān)于代數(shù)式,當(dāng)有理數(shù)在數(shù)軸上所對應(yīng)的點為之間(包括點, )的任意一點時,取得的最大值和最小值分別是__________.

所以代數(shù)式__________(填是或不是)線段的封閉代數(shù)式.

)以下關(guān)的代數(shù)式:

;;;

是線段的封閉代數(shù)式是__________,并證明(只需要證明是線段的封閉代數(shù)式的式子,不是的不需證明).

)關(guān)于的代數(shù)式是線段的封閉代數(shù)式,則有理數(shù)的最大值是__________,最小值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4.

(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;
(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為24,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+2與x軸、y軸分別交于點A(-1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點C(1,n).

(1)求k的值;

(2)求反比例函數(shù)的解析式;

(3)過x軸上的點Da,0)作平行于y軸的直線a>1),分別與直線AB和雙曲線 交于點P、Q,且PQ=2QD,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ θ, ,我們將這種變換記為,n]

1)如圖①,對△ABC作變換[60°]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;

2)如圖②ABC中,∠BAC=30°ACB=90°,對△ABC作變換,n]得到△AB′C′,使點B、C、在同一直線上,且四邊形ABB′C′為矩形,求θn的值;

3)如圖③ABC中,AB=ACBAC=36°,BC=1,對△ABC作變換,n]得到△AB′C′使點B、CB′在同一直線上,且四邊形ABB′C′為平行四邊形,求θn的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:
①常數(shù)m<﹣1;
②在每個象限內(nèi),y隨x的增大而增大;
③若點A(﹣1,h),B(2,k)在圖象上,則h<k;
④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.
其中正確結(jié)論的個數(shù)是( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案