【題目】在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(﹣1,0),請(qǐng)按要求畫圖與作答:
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C與△A″B″C″是否成中心對(duì)稱,若是,找出對(duì)稱中心P′,并寫出其坐標(biāo).
【答案】
(1)解:如圖,△A'B'C'即為所求
(2)解:如圖,A'B'C'即為所求
(3)解:如圖,P'(2.5,0).
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)P旋轉(zhuǎn)180°的對(duì)應(yīng)點(diǎn)A′、B′、C′位置,然后順次連接即可;(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)A″、B″、C″的位置,然后順次連接即可;(3)利用觀察對(duì)應(yīng)點(diǎn)的連線即可求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng)
(2)求圖中陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境:
請(qǐng)根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們可以通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AD為等腰直角△ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DG和DE上,連接BG,AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線段EG經(jīng)過點(diǎn)A時(shí),(如圖②所示)
①求證:BG⊥GE;
②設(shè)DG與AB交于點(diǎn)M,若AG:AE=3:4,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在第一象限,⊙P與x軸相切于點(diǎn)Q,與y軸交于M(0,2),N(0,8)兩點(diǎn),則點(diǎn)P的坐標(biāo)是( )
A.(5,3)
B.(3,5)
C.(5,4)
D.(4,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D是⊙O上的四個(gè)點(diǎn),B是 的中點(diǎn),M是半徑OD上任意一點(diǎn).若∠BDC=40°,則∠AMB的度數(shù)不可能是( )
A.45°
B.60°
C.75°
D.85°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com