【題目】作⊙O的內(nèi)接正六邊形ABCDEF,甲、乙兩人的作法分別是:
甲:第一步:在⊙O上任取一點A,從點A開始,以⊙O的半徑為半徑,在⊙O上依次截取點B,C,D,E,F. 第二步:依次連接這六個點.
乙:第一步:任作一直徑AD. 第二步:分別作OA,OD的中垂線與⊙O相交,交點從點A開始,依次為點B,C,E,F. 第三步:依次連接這六個點.
對于甲、乙兩人的作法,可判斷( )
A.甲正確,乙錯誤B.甲、乙均錯誤
C.甲錯誤,乙正確D.甲、乙均正確
【答案】D
【解析】
根據(jù)等邊三角形的判定與性質(zhì),正六邊形的定義解答即可.
(1)如圖1,由作法知,△AOB, △BOC, △COD,△DOE,△EOF,△AOF都是等邊三角形,
∴∠ABO=∠CBO=60°,
∴∠ABC=120°,
同理可證:∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=∠FAB=120°,
∵AB=BC=CD=DE=EF=AF,
∴六邊形ABCDEF是正六邊形,
故甲正確;
(2)如圖2,連接OB,OF,
由作法知,OF=AF,AB=OB,
∵OA=OF=OB,
∴△AOF,△AOB是等邊三角形,
∴∠OAF=∠OAB=60°,AB=AF,
∴∠BAF=120°,
同理可證,∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=∠FAB=120°,AB=BC=CD=DE=EF=AF,
∴六邊形ABCDEF是正六邊形,
故乙正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)已知∠BAO=25°,點Q是弧AmB上的一點.
①求∠AQB的度數(shù);
②若OA=18,求弧AmB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與軸的兩個交點是點,(在的左側),與軸的交點是點.
(1)求證:,兩點中必有一個點坐標是;
(2)若拋物線的對稱軸是,求其解析式;
(3)在(2)的條件下,拋物線上是否存在一點,使?如果存在,求出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=2x2+bx﹣6的圖象經(jīng)過點(2,﹣6),若這個二次函數(shù)與x軸交于A.B兩點,與y軸交于點C,求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣(m﹣2)x﹣=0.
(1)求證:無論m為何值,方程總有兩個不相等實數(shù)根.
(2)設方程的兩實數(shù)根為x1,x2,且滿足(x1+x2)2=|x1|﹣|x2|+2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為1,為射線上的動點(不與點重合),點關于直線的對稱點為,連接,,,.當是等腰三角形時,的值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,個全等的等腰三角形的底邊在同一條直線上,底角頂點依次重合.連接第一個三角形的底角頂點和第個三角形的頂角頂點交于點,則_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是拋物線對稱軸上的一點,連接OA,以A為旋轉中心將AO逆時針旋轉90°得到AO′,當O′恰好落在拋物線上時,點A的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com