【題目】如圖,將一張正方形紙片ABCD對折,使CD與AB重合,得到折痕MN后展開,E為CN上一點,將△CDE沿DE所在的直線折疊,使得點C落在折痕MN上的點F處,連接AF,BF,BD.則下列結論中:①△ADF是等邊三角形;②tan∠EBF=2-;③S△ADF=S正方形ABCD;④BF2=DF·EF.其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】B
【解析】
由正方形的性質得出AB=CD=AD,∠C=∠BAD=∠ADC=90°,∠ABD=∠ADB=45°,由折疊的性質得出MN垂直平分AD,F(xiàn)D=CD,BN=CN,∠FDE=∠CDE,∠DFE=∠C=90°,∠DEF=∠DEC,由線段垂直平分線的性質得出FD=FA,得出△ADF是等邊三角形,①正確;
設AB=AD=BC=4a,則MN=4a,BN=AM=2a,由等邊三角形的性質得出∠DAF=∠AFD=∠ADF=60°,F(xiàn)A=AD=4a,F(xiàn)M=AM=2a,得出FN=MN-FM=(4-2)a,由三角函數(shù)的定義即可得出②正確;
求出△ADF的面積=ADFM=4a2,正方形ABCD的面積=16a2,得出③錯誤;
求出∠BFE=∠DFB,∠BEF=∠DBF,證出△BEF∽△DBF,得出對應邊成比例,得出④正確;即可得出結論.
∵四邊形ABCD是正方形,
∴AB=CD=AD,∠C=∠BAD=∠ADC=90°,∠ABD=∠ADB=45°,
由折疊的性質得:MN垂直平分AD,F(xiàn)D=CD,BN=CN,∠FDE=∠CDE,∠DFE=∠C=90°,∠DEF=∠DEC,
∴FD=FA,
∴AD=FD=FA,
即△ADF是等邊三角形,①正確;
設AB=AD=BC=4a,則MN=4a,BN=AM=2a,
∵△ADF是等邊三角形,
∴∠DAF=∠AFD=∠ADF=60°,F(xiàn)A=AD=4a,F(xiàn)M=AM=2a,
∴FN=MN-FM=(4-2)a,
∴tan∠EBF==2-,②正確;
∵△ADF的面積=ADFM=×4a×2a=4a2,正方形ABCD的面積=(4a)2=16a2,
∴,③錯誤;
∵AF=AB,∠BAF=90°-60°=30°,
∴∠AFB=∠ABF=75°,
∴∠DBF=75°-45°=30°,∠BFE=360°-90°-60°-75°=135°=∠DFB,
∵∠BEF=180°-75°-75°=30°
∴△BEF∽△DBF,
∴,
∴BF2=DFEF,④正確;
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,F為AB的中點,連接DF,EF,∠ACB=90°,∠ABC=30°.則以下4個結論:①AC⊥DF;②四邊形BCDF為平行四邊形;③DA+DF=BE;④其中,正確的 是( 。
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,設點P到原點O的距離為ρ,OP與x軸正方向的夾角為α,則用[ρ,α]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[,45°].若點Q的極坐標為[4,120°],則點Q的坐標為( )
A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點C在OM上,OC=5,且點C到OA的距離為3.過點C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點C旋轉,當CD與OA不垂直時(如圖2),上述結論是否成立?并說明理由;
(2)把圖1中的∠DCE繞點C旋轉,當CD與OA的反向延長線相交于點D時:
①請在圖3中畫出圖形;
②上述結論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數(shù)量關系,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,如果△ACB和△CDE均為等邊三角形,點A、D、E在同一直線上,連接BE.則AD與BE的數(shù)量關系為 ;∠AEB的度數(shù)為 度.
(2)拓展探究:如圖2,如果△ACB和△CDE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,連接BE,判斷線段AE與BE的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2,AE=6,求EC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( 。
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com