【題目】如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.

【答案】
(1)解:四邊形OCED是菱形.

∵DE∥AC,CE∥BD,

∴四邊形OCED是平行四邊形,

又在矩形ABCD中,OC=OD,

∴四邊形OCED是菱形


(2)解:連接OE.由菱形OCED得:CD⊥OE,

又∵BC⊥CD,

∴OE∥BC(在同一平面內(nèi),垂直于同一條直線的兩直線平行),

又∵CE∥BD,

∴四邊形BCEO是平行四邊形;

∴OE=BC=8(7分)

∴S四邊形OCED= OECD= ×8×6=24.


【解析】(1)首先可根據(jù)DE∥AC、CE∥BD判定四邊形ODEC是平行四邊形,然后根據(jù)矩形的性質(zhì):矩形的對角線相等且互相平分,可得OC=OD,由此可判定四邊形OCED是菱形.(2)連接OE,通過證四邊形BOEC是平行四邊形,得OE=BC;根據(jù)菱形的面積是對角線乘積的一半,可求得四邊形ODEC的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并填空在體育比賽中我們常常會遇到計算比賽場次的問題,這時我們可以借助數(shù)線段的方法來計算.比如在一個小組中有 4 個隊,進(jìn)行單循環(huán)比賽,我們要計算總的比賽場次,我們就 設(shè)這四個隊分別為 A、B、C、D,并把它們標(biāo)在同一條線段上,如下圖:

因為單循環(huán)比賽就是每兩個隊之間都要比賽一場這就相當(dāng)于,在上述圖形中四個點連接線段,按一定規(guī)律得到的線段有:

AB,AC,AD…………3

BC,BD………………2

CD……………………1

總的線段條數(shù)是 3+2+1=6

所以可知 4 個隊進(jìn)行單循環(huán)比賽共比賽六場.

(1).類比上述想法,若一個小組有 6 個隊進(jìn)行單循環(huán)比賽,則總的比賽場次是_____

(2).類比上述想法,若一個小組有 n 個隊,進(jìn)行單循環(huán)比賽則總的比賽場次是_____

(3).我們知道 2006 年世界杯共有 32 支代表隊參加比賽,共分成 8 個小組,每組 4 代表隊.第一階段每個小組進(jìn)行單循環(huán)比賽.則第一階段共 進(jìn) _______ 場比賽.

(4).若分成 m 個小組,每個小組有 n 個隊,第一階段每個小組進(jìn)行單循環(huán)比賽.則第 一階段共需要進(jìn)行_____________場比賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx﹣3與x軸交于A、B兩點,與y軸交于點C,O是坐標(biāo)原點,已知點B的坐標(biāo)是(3,0),tan∠OAC=3;

(1)求該拋物線的函數(shù)表達(dá)式;
(2)點P在x軸上方的拋物線上,且∠PAB=∠CAB,求點P的坐標(biāo);
(3)若平行于x軸的直線與拋物線交于點M、N(M點在N點左側(cè)),
①若以MN為直徑的圓與x軸相切,求該圓的半徑;
②若Q(m,4)是直線MN上一動點,當(dāng)以點C、B、Q為頂點的三角形的面積等于6時,請直接寫出符合條件的m值,為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6,購費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD交于點O,給出下列四組條件:①ABCD,ADBC;ABCD,A=C;AO=CO,BO=DO;ABCD,AD=BC.

一定能判定四邊形ABCD是平行四邊形的條件有----------------------------( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6,購費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生“自主學(xué)習(xí)、合作交流”的情況,對八年級各班部分同學(xué)進(jìn)行了一段時間的跟蹤調(diào)査,將調(diào)查結(jié)果(A:特別好; B:較好; C:一般; D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:
(1)此次跟蹤調(diào)查的學(xué)生有人;扇形統(tǒng)計圖中,D類所占圓心角為度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)如果該校八年級共有學(xué)生360人,試估計A類學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.

(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

查看答案和解析>>

同步練習(xí)冊答案