【題目】如圖,矩形中,,,點(diǎn)是邊上一點(diǎn),連接,把沿折疊,使點(diǎn)落在點(diǎn)處.當(dāng)為直角三角形時(shí),則的長(zhǎng)為________.
【答案】或
【解析】
當(dāng)△CB′E為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
連結(jié)AC,先利用勾股定理計(jì)算出AC=10,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線(xiàn),即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線(xiàn)AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=6,可計(jì)算出CB′=4,設(shè)BE=x,則EB′=x,CE=8-x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.再在Rt△ABE中,利用勾股定理可得AE的長(zhǎng)
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)ABEB′為正方形.可得AB=BE,在Rt△ABE中,利用勾股定理可得AE的長(zhǎng).
解:當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
連結(jié)AC,在Rt△ABC中,AB=6,BC=8,
∴AC=10,
∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時(shí),得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線(xiàn),即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線(xiàn)AC上的點(diǎn)B′處,
∴EB=EB′,AB=AB′=6,
∴CB′=10-6=4;
設(shè)BE=,則EB′=,CE=
在Rt△CEB′中,由勾股定理可得:,
解得:
在Rt△ABE中,利用勾股定理可得:
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.
此時(shí)ABEB′為正方形,
∴BE=AB=6,
∴在Rt△ABE中,利用勾股定理可得:
綜上所述,的長(zhǎng)為或
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知CE⊥AB,BF⊥AC,垂足分別為E、F,CE與BF相交于點(diǎn)D,且AD平分∠BAC.求證:CE=BF.
(2)如圖2,AD是△ABC的角平分線(xiàn),AE=AC,EF∥BC交AC于F點(diǎn),求證:EC平分∠DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,中,.現(xiàn)想利用三角形全等證明,則圖中所添加的輔助線(xiàn)應(yīng)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)機(jī)動(dòng)機(jī)擁有量對(duì)道路通行的影響,學(xué)校九年級(jí)社會(huì)實(shí)踐小組對(duì)2010年~2017年機(jī)動(dòng)車(chē)擁有量、車(chē)輛經(jīng)過(guò)人民路路口和學(xué)校門(mén)口的堵車(chē)次數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),并繪制成下列統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)寫(xiě)出2016年機(jī)動(dòng)車(chē)的擁有量,分別計(jì)算2010年~2017年在人民路路口和學(xué)校門(mén)口堵車(chē)次數(shù)的平均數(shù).
(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù),結(jié)合生活實(shí)際,對(duì)機(jī)動(dòng)車(chē)擁有量與人民路路口和學(xué)校門(mén)口堵車(chē)次數(shù),說(shuō)說(shuō)你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)平面直角坐標(biāo)系的原點(diǎn),三角形中,,頂點(diǎn)的坐標(biāo)分別為,且.
(1)求三角形的面積;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā)沿射線(xiàn)方向以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.連接,請(qǐng)用含t的式子表示三角形的面積;
(3)在(2)的條件下,當(dāng)三角形的面積為時(shí),直線(xiàn)與軸相交于點(diǎn),求點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某劇院的觀(guān)眾席的座位為扇形,且按下列分式設(shè)置:
排數(shù)(x) | 1 | 2 | 3 | 4 | … |
座位數(shù)(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當(dāng)x每增加1時(shí),y如何變化?
(2)寫(xiě)出座位數(shù)y與排數(shù)x之間的關(guān)系式;
(3)按照上表所示的規(guī)律,某一排可能有90個(gè)座位嗎?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD⊥AB于點(diǎn)D,點(diǎn)E在CD上,下列四個(gè)條件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,將其中兩個(gè)作為條件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,身高1.6米的小明從距路燈的底部(點(diǎn)O)20米的點(diǎn)A沿AO方向行走14米到點(diǎn)C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標(biāo)出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點(diǎn)P)距地面8米,小明從A到C時(shí),身影的長(zhǎng)度是變長(zhǎng)了還是變短了?變長(zhǎng)或變短了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如右上圖,在正方形ABCD中AB=3,,以B為圓心,半徑為1畫(huà)⊙B,點(diǎn)P在⊙B上移動(dòng),連接AP,并將AP繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 90°至AP′,連接BP′,在點(diǎn)P移動(dòng)過(guò)程中,BP′長(zhǎng)的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com