【題目】如圖,在Rt△ABC中,∠C=90°,AD是角平分線,DE⊥AD交AB于E,△ADE的外接圓⊙O與邊AC相交于點F,過F作AB的垂線交AD于P,交AB于M,交⊙O于G,連接GE.
(1)求證:BC是⊙O的切線;
(2)若tan∠G=,BE=4,求⊙O的半徑;
(3)在(2)的條件下,求AP的長.
【答案】(1)證明見解析;(2)6;(3)
【解析】試題分析:(1)連結OD,根據AD是角平分線,求出∠C=90°,得到OD⊥BC,求出BC是⊙O的切線;
(2)構造直角三角形,根據勾股定理求出k的值即可;
(3)設FG與AE的交點為M,連結AG,利用三角函數和相似三角形結合勾股定理解題.
試題解析:(1)證明:連結OD.∵DE⊥AD,∴AE是⊙O的直徑,即O在AE上.
∵AD是角平分線,∴∠1=∠2.
∵OA=OD,∴∠2=∠3.∴∠1=∠3.∴OD∥AC.
∵∠C=90°,∴OD⊥BC.∴BC是⊙O的切線.
(2)解:∵OD∥AC,∴∠4=∠EAF.
∵∠G=∠EAF,∴∠4=∠G.
∴tan∠4=tan∠G=.
設BD=4k,則OD=OE=3k.
在Rt△OBD中,由勾股定理得(3k)2+(4k)2=(3k+4)2,
解得,k1=2,k2=(舍),(注:也可由OB=5k=3k+4得k=2),
∴3k=6,即⊙O的半徑為6.
(3)解:連結AG,則∠AGE=90°,∠EGM=∠5.
∴tan∠5=tan∠EGM=,即, ,
∴,
∴AM=AE==.
∵OD∥AC,∴, ,即, .
∴AC=,CD=.
∵∠1=∠2,∠ACD=∠AMP=90°,∴△ACD∽△AMP.
∴,∴PM= =.
∴AP==.
科目:初中數學 來源: 題型:
【題目】如圖(1),點P是等腰三角形ABC底邊BC上的一動點,過點P作BC的垂線,交直線AB于點Q,交CA的延長線于點R.
(1)請觀察AR與AQ,它們相等嗎?并證明你的猜想.
(2)如圖(2)如果點P沿著底邊BC所在的直線,按由C向B的方向運動到CB的延長線上時,(1)中所得的結論還成立嗎?請你在圖(2)中完成圖形,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線(k>0)與雙曲線(x>0)交于點M、N,且點N的橫坐標為k. .
(1) 如圖1,當k=1時.
①求m的值及線段MN的長;
②在y軸上是否是否存在點Q,使∠MQN=90°,若存在,請求出點Q的坐標;若不存在,請說明理由.
(2) 如圖2,以MN為直徑作⊙P,當⊙P與y軸相切時,求k值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.
(1)求證:∠1=∠2;
(2)連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,將拋物線y=﹣2(x﹣1)2+3向下平移2個單位后所得拋物線的表達式為( 。
A. y=﹣2(x+1)2+3B. y=﹣2(x﹣3)2+3
C. y=﹣2(x﹣1)2+5D. y=﹣2(x﹣1)2+1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在讀書月活動中,某校號召全體師生積極捐書,為了解所捐書籍的種類,圖書管理員對部分書籍進行了抽樣調查,根據調查數據繪制了如下不完整的統(tǒng)計圖表.請你根據統(tǒng)計圖表所提供的信息回答下面問題:
(1)統(tǒng)計表中的n= ______,并補全條形統(tǒng)計圖;
(2)本次活動師生共捐書2000本,請估計有多少本科普類圖書?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=2,BD=2,各邊 中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為_________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com