【題目】如圖,已知正方形中,為對(duì)角線(xiàn),點(diǎn)在邊上,點(diǎn)在邊上,,分別交于點(diǎn)、,,則__

【答案】

【解析】

延長(zhǎng)EAH,使AH=CF,連結(jié)DH,證明DCF≌△DAH,得∠CDF=ADH,證明HDE≌△FDE,則∠EDF=45°,將ADM繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,使DA邊與DC邊重合,得到DCQ,根據(jù)SAS判定DMN≌△DQN,可得MN=NQ,∠NCQ=90°,則NQ可求出.

解:延長(zhǎng)EAH,使AH=CF,連結(jié)DH,

RtDCFRtDAH中,
AH=CFAD=CD,∠HAD=FCD=90°,
RtDCFRtDAHSAS),
∴∠CDF=ADH,DH=DF
AE+FC=EF,
EF=EH,
DE=DE,
∴△HDE≌△FDESSS),
∴∠HDE=FDE,
∴∠EDF=ADC=45°,
ADM繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,使DA邊與DC邊重合,得到DCQ,連結(jié)NQ,
由旋轉(zhuǎn)可得,ADM≌△DCQ,
AM=CQ,∠ADM=CDQ,
∵∠EDF=45°,∠ADC=90°,
∴∠ADM+FDC=45°
∴∠CDQ+FDC=45°,即∠NDQ=45°,
DMNDQN中,

∴△DMN≌△DQNSAS),
MN=NQ,
又∠NCQ=NCD+DCQ=45°+45°=90°
RtNCQ中,NQ2=CQ2+NC2,即MN2=AM2+NC2
AM=4,NC=2

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種玩具,每件的進(jìn)貨價(jià)為40元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該玩具每件的銷(xiāo)售價(jià)為50元時(shí),每天可銷(xiāo)售200件;當(dāng)每件的銷(xiāo)售價(jià)每增加1元,每天的銷(xiāo)售數(shù)量將減少10件,現(xiàn)該商店決定漲價(jià)銷(xiāo)售.

1)當(dāng)每件的銷(xiāo)售價(jià)為53元,該玩具每天的銷(xiāo)售數(shù)量為   件;

2)若商店銷(xiāo)售該玩具每天獲利2000元,每件玩具銷(xiāo)售價(jià)應(yīng)定為多少元?

3)若該玩具每件銷(xiāo)售價(jià)不低于57元,同時(shí),每天的銷(xiāo)售量至少20件,求每件的銷(xiāo)售價(jià)定為多少元時(shí),銷(xiāo)售該玩具每天獲得的利潤(rùn)w最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)60°得,連接,若,則的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,)為圓心,以2為半徑的圓與x軸交于A,B兩點(diǎn).

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A,B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,點(diǎn)中點(diǎn),連接、交于點(diǎn)

1)如圖1,求證:;

2)如圖2,連接,請(qǐng)直接寫(xiě)出圖中面積等于面積2倍的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2+bx+ca0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示則下列結(jié)論:4ab0;c0;c3a4a2bat2+btt為實(shí)數(shù));點(diǎn)(﹣,y1),(﹣,y2),()是該拋物線(xiàn)上的點(diǎn),則y2y1y3,其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)動(dòng)員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時(shí)間ts)滿(mǎn)足二次函數(shù)關(guān)系,th的幾組對(duì)應(yīng)值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之間的函數(shù)關(guān)系式(不要求寫(xiě)t的取值范圍);

(2)求小球飛行3s時(shí)的高度;

(3)問(wèn):小球的飛行高度能否達(dá)到22m?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)圖象如圖,下列結(jié)論中正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F是對(duì)角線(xiàn)BD上兩點(diǎn),且∠EAF=45°,將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

(1)EA是∠QED的平分線(xiàn);

(2)EF2=BE2+DF2

查看答案和解析>>

同步練習(xí)冊(cè)答案