【題目】如圖,數(shù)軸上點(diǎn)、表示的有理數(shù)分別為-10、5,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn),點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).
(1)若點(diǎn)表示的有理數(shù)是0,那么的長(zhǎng)為______;若點(diǎn)表示的有理數(shù)是1,那么的長(zhǎng)為______.
(2)點(diǎn)在射線上運(yùn)動(dòng)(不與點(diǎn)、重合)的過(guò)程中,的長(zhǎng)是否發(fā)生改變?若不改變,請(qǐng)求出的長(zhǎng);若改變,請(qǐng)說(shuō)明理由.
【答案】(1)10,10;(2)的長(zhǎng)不會(huì)發(fā)生改變,且.
【解析】
(1)由點(diǎn)P表示的有理數(shù)為0可得出AP、BP的長(zhǎng)度,根據(jù)三等分點(diǎn)的定義可得出MP、NP的長(zhǎng)度,再由MN=MP+NP即可求出MN的長(zhǎng)度;當(dāng)點(diǎn)P表示的有理數(shù)為1時(shí),利用同樣的方法求解即可;
(2)設(shè)點(diǎn)P表示的有理數(shù)是a(a>﹣10且a≠5),分﹣10<a<5及a>5兩種情況考慮,由點(diǎn)P表示的有理數(shù)可得出AP、BP的長(zhǎng)度(用含字母a的代數(shù)式表示),根據(jù)三等分點(diǎn)的定義可得出MP、NP的長(zhǎng)度(用含字母a的代數(shù)式表示),再由MN=MP+NP(或MN=MP﹣NP),即可求出MN的長(zhǎng),進(jìn)而可作出判斷.
解:(1)若點(diǎn)P表示的有理數(shù)是0,則AP=10,BP=5.
∵M是線段AP靠近點(diǎn)A的三等分點(diǎn),N是線段BP靠近點(diǎn)B的三等分點(diǎn).
∴MP=AP=,NP=BP=,
∴MN=MP+NP=+=10;
若點(diǎn)P表示的有理數(shù)是1,則AP=11,BP=4.
∵M是線段AP靠近點(diǎn)A的三等分點(diǎn),N是線段BP靠近點(diǎn)B的三等分點(diǎn),
∴MP=AP=,NP=BP=,
∴MN=MP+NP=+=10.
故答案為:10,10;
(2)MN的長(zhǎng)不會(huì)發(fā)生改變,理由如下:
設(shè)點(diǎn)P表示的有理數(shù)是a(a>﹣10且a≠5).
當(dāng)﹣10<a<5時(shí),如圖1,AP=a+10,BP=5﹣a.
∵M是線段AP靠近點(diǎn)A的三等分點(diǎn),N是線段BP靠近點(diǎn)B的三等分點(diǎn).
∴MP=AP=(a+10),NP=BP=(5﹣a),
∴MN=MP+NP=(a+10)+(5﹣a)=10;
當(dāng)a>5時(shí)(如圖2),AP=a+10,BP=a﹣5.
∵M是線段AP靠近點(diǎn)A的三等分點(diǎn),N是線段BP靠近點(diǎn)B的三等分點(diǎn).
∴MP=AP=(a+10),NP=BP=( a﹣5),
∴MN=MP﹣NP=(a+10)-( a﹣5)=10.
綜上所述:點(diǎn)P在射線AB上運(yùn)動(dòng)(不與點(diǎn)A,B重合)的過(guò)程中,MN的長(zhǎng)不會(huì)發(fā)生變化,且為定值10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對(duì)稱中心作點(diǎn)P(0,2)的對(duì)稱點(diǎn)P1,以B為對(duì)稱中心作點(diǎn)P1的對(duì)稱點(diǎn)P2,以C為對(duì)稱中心作點(diǎn)P2的對(duì)稱點(diǎn)P3,以D為對(duì)稱中心作點(diǎn)P3的對(duì)稱點(diǎn)P4,…,重復(fù)操作依次得到點(diǎn)P1,P2,…,則點(diǎn)P2010的坐標(biāo)是( )
A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點(diǎn)D(如圖1).
(1)若AB=2,∠B=30°,求CD的長(zhǎng);
(2) 取AC的中點(diǎn)E,連結(jié)D、E(如圖2),求證:DE與⊙O相切.
【答案】(1);(2)見(jiàn)解析
【解析】分析:連接AD ,根據(jù)AC是⊙O的切線,AB是⊙O的直徑,得到∠CAB=∠ADB=90°,根據(jù)∠B=30°,解直角三角形求得的長(zhǎng)度.
連接OD,AD.根據(jù)DE=CE=EA,∠EDA=∠EAD. 根據(jù)OD=OA,得到
∠ODA=∠DAO,得到∠EDA+∠ODA=∠EAD+∠DAO.得到∠EDO=90°即可.
詳解:(1)如圖,連接AD ,
∵AC是⊙O的切線,AB是⊙O的直徑,
∴∠CAB=∠ADB=90°,
∴ΔCAB,ΔCAD均是直角三角形.
∴∠CAD=∠B=30°.
在RtΔCAB中,AC=ABtan30°=
∴在RtΔCAD中,CD=ACsin30°=
(2)如圖,連接OD,AD.
∵AC是⊙O的切線,AB是⊙O的直徑,
∴∠CAB=∠ADB=∠ADC=90°,
又∵E為AC中點(diǎn),
∴DE=CE=EA,
∴∠EDA=∠EAD.
∵OD=OA,
∴∠ODA=∠DAO,
∴∠EDA+∠ODA=∠EAD+∠DAO.
即:∠EDO=∠EAO=90°.
又點(diǎn)D在⊙O上,因此DE與⊙O相切.
點(diǎn)睛:考查解直角三角形,圓周角定理,切線的判定與性質(zhì)等,屬于圓的綜合題,比較基礎(chǔ).注意切線的證明方法,是高頻考點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】課外活動(dòng)時(shí)間,甲、乙、丙、丁4名同學(xué)相約進(jìn)行羽毛球比賽.
(1)如果將4名同學(xué)隨機(jī)分成兩組進(jìn)行對(duì)打,求恰好選中甲乙兩人對(duì)打的概率;
(2)如果確定由丁擔(dān)任裁判,用“手心、手背”的方法在另三人中競(jìng)選兩人進(jìn)行比賽.競(jìng)選規(guī)則是:三人同時(shí)伸出“手心”或“手背”中的一種手勢(shì),如果恰好只有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新競(jìng)選.這三人伸出“手心”或“手背”都是隨機(jī)的,求一次競(jìng)選就能確定甲、乙進(jìn)行比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)圖象交于第二,四象限內(nèi)A,B兩點(diǎn),與軸交于點(diǎn)C,與軸交于點(diǎn)D.若點(diǎn)B的縱坐標(biāo)為,OA=5, .
(1)求反比例函數(shù)解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年元旦莫小貝在襄陽(yáng)萬(wàn)達(dá)廣場(chǎng)購(gòu)進(jìn)一家商鋪,裝修后用于銷售某品牌的女裝.2018元旦莫小貝盤(pán)點(diǎn)時(shí)發(fā)現(xiàn):2017年自家店內(nèi)女裝的平均成本為4百元/件,當(dāng)年的銷售量 (百件)與平均銷售價(jià)格 (百元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.
(1)請(qǐng)求出與之間的函數(shù)關(guān)系式;
(2)若莫小貝購(gòu)商鋪及裝修一共花了120萬(wàn)元,請(qǐng)通過(guò)計(jì)算說(shuō)明2017年莫小貝是賺還是虧?若賺,最多賺多少元?若虧,最少虧多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察表格:
1條直線 0個(gè)交點(diǎn) 平面分成(1+1)塊 | 2條直線 1個(gè)交點(diǎn) 平面分成(1+1+2)塊 | 3條直線 (1+2)個(gè)交點(diǎn) 平面分成(1+1+2+3)塊 | 4條直線 (1+2+3)個(gè)交點(diǎn) 平面分成(1+1+2+3+4)塊 |
根據(jù)表格中的規(guī)律解答問(wèn)題:
(1)5條直線兩兩相交,有 個(gè)交點(diǎn),平面被分成 塊;
(2)n條直線兩兩相交,有 個(gè)交點(diǎn),平面被分成 塊;
(3)應(yīng)用發(fā)現(xiàn)的規(guī)律解決問(wèn)題:一張圓餅切10刀(不許重疊),最多可得到 塊餅.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解家長(zhǎng)和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:
A.僅學(xué)生自己參與 B.家長(zhǎng)和學(xué)生一起參與
C.僅家長(zhǎng)自己參與 D.家長(zhǎng)和學(xué)生都未參與
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,共調(diào)查了_________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中計(jì)算類所對(duì)應(yīng)扇形的圓心角的度數(shù).
(3)根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校1500名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚(yú)米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬(wàn)元,收購(gòu)成本為b萬(wàn)元,求a和b的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價(jià)為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷售總額﹣總成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com