【題目】學(xué)校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需18元;3只A型節(jié)能燈和2只B型節(jié)能燈共需19元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;

(2)學(xué)校準備購進這兩種型號的節(jié)能燈共40只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能

燈數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

【答案】(1) 一 只A型節(jié)能燈的售價是3元,一只B型節(jié)能燈的售價是5元.;(2)見解析.

【解析】(1)設(shè)一只A型節(jié)能燈的售價是x元,一只B型節(jié)能燈的售價是y元,根據(jù):“1只A型節(jié)能燈和3只B型節(jié)能燈共需18元;3只A型節(jié)能燈和2只B型節(jié)能燈共需19元”列方程組求解即可;
(2)首先根據(jù)“A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的2倍”確定自變量的取值范圍,然后得到有關(guān)總費用和A型燈的只數(shù)之間的關(guān)系得到函數(shù)解析式,確定函數(shù)的最值即可.

詳解:(1)設(shè)一只A型節(jié)能燈的售價是x元,一只B型節(jié)能燈的售價是y元.

根據(jù)題意,得:

解得:

答:一只A型節(jié)能燈的售價是3元,一只B型節(jié)能燈的售價是5元.

(2)設(shè)購進A型節(jié)能燈m只,總費用為W元

根據(jù)題意,得:W = 3m + 5(40﹣m)=﹣2m + 200

∵﹣2<0,

∴ W 隨 的增大而減小

又 ∵ ,解得:

m為正整數(shù),

∴當(dāng)m = 26時,W最小=﹣2×26 + 200 = 148 此時40﹣26 = 14

答:當(dāng)購買A型燈26只,B型燈14只時,最省錢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上的一點,且BC=EC,CFBEAB于點F,PEB延長線上一點,下列結(jié)論:①BE平分∠CBF;CF平分∠DCB;BC=FB;PF=PC.其中正確的有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠水平,隨機抽取該年級名學(xué)生進行測試,并把測試成績(單位:) 繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

請根據(jù)圖表中所提供的信息,完成下列問題

1)表中= ,=

2)請把頻數(shù)分布直方圖補充完整;

3)跳遠成績大于等于為優(yōu)秀,若該校九年級共有名學(xué)生,估計該年級學(xué)生立定跳遠成績優(yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在∠MON中,以點O為圓心,任意長為半徑作弧,交射線OM于點A,交射線ON于點B,再分別以A、B為圓心,OA的長為半徑作弧,兩弧在∠MON的內(nèi)部交于點C,作射線OC,若OA5,AB6,則點BAC的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為B(-1,3),與軸的交點A在點(-3,0)和(-2,0)之間,以下結(jié)論:①;②;③;④; ⑤其中正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一列數(shù):a12a2a1+4,a3a2+6……,anan1+2nn為正整數(shù),n≥2),

1a4的值是_____

2)當(dāng)n2018時,則an37n+324的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達A村,繼續(xù)向南騎行3 km到達B村,然后向北騎行9 km到達C村,最后回到郵局.

(1)以郵局為原點,以向北為正方向,用0.5 cm表示1 km,畫出數(shù)軸,并在該數(shù)軸上表示出AB,C三個村莊的位置.

(2)C村離A村有多遠?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(原題)已知直線ABCD,點P為平行線AB,CD之間的一點.如圖1,若∠ABP=50°,∠CDP=60°,BE平分ABP,DE平分∠CDP,∠BED的度數(shù)

(探究)如圖2,當(dāng)點P在直線AB的上方時,若∠ABP=α,∠CDP=β,∠ABP和CDP的平分線交于點E1,∠ABE1∠CDE1的角平分線交于點E2,∠ABE2∠CDE2的角平分線交于點E3,…以此類推,求∠En的度數(shù).

(變式)如圖3,ABP的角平分線的反向延長線和CDP的補角的角平分線交于點E,試猜想P與E的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的△A1B1C1

(2)以點O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

同步練習(xí)冊答案