精英家教網 > 初中數學 > 題目詳情
如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點O,∠1=∠2.
(1)求證:四邊形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.

【答案】分析:(1)因為∠1=∠2,所以BO=CO,2BO=2CO,又因為四邊形ABCD是平行四邊形,所以AO=CO,BO=OD,則可證AC=BD,根據對角線相等的平行四邊形是矩形即可判定;
(2)在△BOC中,∠BOC=120°,則∠1=∠2=30°,AC=2AB,根據勾股定理可求得BC的值,則四邊形ABCD的面積可求.
解答:(1)證明:∵∠1=∠2,
∴BO=CO,即2BO=2CO.
∵四邊形ABCD是平行四邊形,
∴AO=CO,BO=OD,
∴AC=2CO,BD=2BO,
∴AC=BD.
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形;

(2)解:在△BOC中,∵∠BOC=120°,
∴∠1=∠2=(180°-120°)÷2=30°,
∴在Rt△ABC中,AC=2AB=2×4=8(cm),
∴BC=(cm).
∴四邊形ABCD的面積=
點評:此題把矩形的判定、勾股定理和平行四邊形的性質結合求解.考查學生綜合運用數學知識的能力.解決本題的關鍵是讀懂題意,得到相應的四邊形的各邊之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數學 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數量關系為
 
;
(2)當AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網

查看答案和解析>>

科目:初中數學 來源:新課標 讀想練同步測試 七年級數學(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習冊答案