【題目】如圖,放置的△OAB,,,…都是邊長為2的等邊三角形,邊AO軸上,點、都在直線上,則點的坐標為_______

【答案】,2021

【解析】

延長A1B1x軸于C,可證A1B1x軸,由條件可求得∠B1OC=30°,利用直角三角形的性質(zhì)可求得B1C=1,OC=,可求得B1的坐標,進而可求得A1的坐標,同理可求得A2A3的坐標,則可得出規(guī)律,求得A2019的坐標.

解:如圖,延長A1B1x軸于C,

△OAB,△,△,…是等邊三角形,且邊長為2

∴∠AOB1=60°,OB1=2,

∴∠B1OC=30°,=60°,

∴∠OB1C=60°,

∴∠OCB1=90°,

RtB1OC中,可得B1C=1,OC=,

B1的坐標為(,1),

A1的坐標為(3),

同理A224)、A33,5),

An的坐標為(n,n+2),

A2019的坐標為(2019,2021),

故答案為:(2019,2021).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)操作發(fā)現(xiàn)如圖,矩形ABCD中,EAD的中點,將ABE沿BE折疊后得到GBE,且點G在矩形ABCD內(nèi)部.小明將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.

2)問題解決(設(shè)DF=x,AD=y)

保持(1)中的條件不變,若DC=2DF,求的值;

3)類比探求

保持(1)中條件不變,若DC=nDF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準備購進一批電冰箱和空調(diào),每臺電冰箱的進價比每臺空調(diào)的進價多400元,商店用8000元購進電冰箱的數(shù)量與用6400元購進空調(diào)的數(shù)量相等.

(1)求每臺電冰箱與空調(diào)的進價分別是多少?

(2)已知電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元.若商店準備購進這兩種家電共100臺,其中購進電冰箱x臺(33x40),那么該商店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線ly軸交于點D.

(1)求拋物線的函數(shù)表達式;

(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且BCGBCD面積相等,求點G的坐標;

(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,甲從家出發(fā)前往與家相距千米的旅游景點旅游,千米/時的速度步行小時后,改騎自行車以千米/時的速度繼續(xù)向目的地出發(fā),乙在甲前面千米處,在甲出發(fā)小時后開車追趕甲,兩人同時到達目的地.設(shè)甲、乙兩人離甲家的距離(千米)與甲出發(fā)的時間(小時)之間的函數(shù)關(guān)系如圖所示.

(1)求乙的速度;

(2)求甲出發(fā)多長時間后兩人第一次相遇;

(3)求甲出發(fā)幾小時后兩人相距千米. .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店11月份購進甲、乙兩種水果共花費1700元,其中甲種水果8/千克,乙種水果18/千克.12月份,這兩種水果的進價上調(diào)為:甲種水果10/千克,乙種水果20/千克.

1)若該店12月份購進這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進甲、乙兩種水果分別是多少千克?

2)若12月份將這兩種水果進貨總量減少到120千克,設(shè)購進甲種水果a千克,需要支付的貨款為w元,求wa的函數(shù)關(guān)系式;

3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,上的一點,直線的延長線交于點,并與交于點,下列式子中錯誤的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點上一點且,過點畫線段,使點的邊上且點,的一個頂點組成的小三角形與相似,則滿足條件的線段的長度分別為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某所中學(xué)七、八、九年級各有6個班級每個班級人數(shù)為50左右,根據(jù)實際情況,決定開設(shè)“A:乒乓球,B:籃球,C:跑步,D:跳繩這四種項目為了解學(xué)生喜歡哪一種項目,該學(xué)校體育組隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖請結(jié)合圖中信息解答下列問題:

(1)樣本容量是________,請你為體育組提供一種較為合理的抽樣方案;

(2)把條形統(tǒng)計圖補充完整;

(3)該校貝貝、晶晶、洋洋和妮妮是學(xué)校的校園之星,現(xiàn)要從這四人中選出兩人作為陽光體育運動形象代言人貝貝和晶晶同時被抽到的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案