【題目】古埃及人用下面的方法得到直角三角形,把一根長(zhǎng)繩打上等距離的13個(gè)結(jié)(12段),然后用樁釘釘成一個(gè)三角形,如圖1,其中∠C便是直角.
(1)請(qǐng)你選擇古埃及人得到直角三角形這種方法的理由 (填A或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形
(2)如果三個(gè)正整數(shù)a、b、c滿(mǎn)足a2+b2=c2,那么我們就稱(chēng) a、b、c是一組勾股數(shù),請(qǐng)你寫(xiě)出一組勾股數(shù)
(3)仿照上面的方法,再結(jié)合上面你寫(xiě)出的勾股數(shù),你能否只用繩子,設(shè)計(jì)一種不同于上面的方法得到一個(gè)直角三角形(在圖2中,只需畫(huà)出示意圖.)
【答案】(1)B(2)(6,8,10)(3)見(jiàn)解析
【解析】
(1)根據(jù)對(duì)勾股定理和勾股定理的逆定理的理解即可寫(xiě)出答案;
(2)根據(jù)題中所給勾股數(shù)的定義寫(xiě)出一組即可,注意答案不唯一;
(3)由(2)中所寫(xiě)的勾股數(shù)畫(huà)出圖形即可.
(1)古埃及人得到直角三角形這種方法的依據(jù)是運(yùn)用了勾股定理逆定理,故選B;
(2)根據(jù)勾股數(shù)的定義寫(xiě)出一組勾股數(shù)為(6,8,10);
(3)所畫(huà)圖形如下所示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, BD 是△ABC 的角平分線(xiàn), AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數(shù)為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,AD是∠BAC的平分線(xiàn),AE是∠BAC的外角平分線(xiàn),ED∥AB交AC于點(diǎn)G,下列結(jié)論:①BD=DC;②AE∥BC;③AE=AG;④AG=DE.正確的是_____(填寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線(xiàn)的拋物線(xiàn)與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線(xiàn)與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線(xiàn)上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線(xiàn)段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段QD長(zhǎng)度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察分析下列方程:
①的解是或;
②的解是或;
③的解是或;
……
利用它們所蘊(yùn)含的規(guī)律,則關(guān)于的方程(為正整數(shù))的解是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角尺如圖1所示放置,圖2是由它抽象出的幾何圖形,點(diǎn),,在同一條直線(xiàn)上,連接.
(1)請(qǐng)找出圖2中與全等的三角形,并說(shuō)明理由(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)判斷線(xiàn)段與是否垂直,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠A=∠B=30°,E,F 在 AB 上,∠ECF=60°.
(1)畫(huà)出△BCF 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 120°后的△ACK;
(2)在(1)中,若 AE2+ EF2= BF2,求證 BF= CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,點(diǎn)P在射線(xiàn)AC上,作點(diǎn)P關(guān)于直線(xiàn)CD的對(duì)稱(chēng)點(diǎn)Q,作射線(xiàn)BQ交射線(xiàn)DC于點(diǎn)E,連接BP.
(1)當(dāng)點(diǎn)P在線(xiàn)段AC上時(shí),如圖1.
①依題意補(bǔ)全圖1;
②若EQ=BP,則∠PBE的度數(shù)為 ,并證明;
(2)當(dāng)點(diǎn)P在線(xiàn)段AC的延長(zhǎng)線(xiàn)上時(shí),如圖2.若EQ=BP,正方形ABCD的邊長(zhǎng)為1,請(qǐng)寫(xiě)出求BE長(zhǎng)的思路.(可以不寫(xiě)出計(jì)算結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com