【題目】已知等腰三角形的一個角為40°,則其頂角為( )
A. 40° B. 80° C. 40°或100° D. 100°
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,菱形ABCD中,CH⊥AB,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求DM的長;
(2)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關系式;
(3)在(2)的條件下,當點P在邊AB上運動時,是否存在這樣的t的值,使∠MPB與∠BCD互為余角?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④∠COD=60°,成立的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D在直線BC上,連接AD,作∠ADN=60°,直線DN交射線AB于點E,過點C作CF∥AB交直線DN于點F.
(1)當點D在線段BC上,∠NDB為銳角時,如圖①,
①判斷∠1與∠2的大小關系,并說明理由;
②過點F作FM∥BC交射線AB于點M,求證:CF+BE=CD;
(2)當點D在線段BC的延長線上,∠NDB為銳角時,如圖②;
當點D在線段CB的延長線上,∠NDB為鈍角時,如圖③;
請分別寫出線段CF,BE,CD之間的數(shù)量關系,不需要證明;
(3)在(2)的條件下,若∠ADC=30°,S△ABC=4,直接寫出BE和CD的長度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com