精英家教網 > 初中數學 > 題目詳情

如圖,在ABCD中,點E,F(xiàn)在對角線AC上,且AE=CF.請你以F為一個端點,和圖中已標明字母的某一點連成一條新線段,猜想并證明它和圖中已有的某一條線段相等(只需證明一組線段相等即可).

(1)連接________;

(2)猜想:________=________;

(3)證明.

答案:
解析:

  (1)連接BF;

  (2)猜想:BFDE;

  (3)證明:∵四邊形ABCD是平行四邊形.

  ∴ADBC,

  ∴∠DAE=∠BCF.

  又∵AE=CF,

  △ADE≌△CBF.

  ∴BF=DE.

  剖析:本題主要考查平行四邊形的性質和全等三角形的判定.運用綜合法就能猜想BF=DE或DF=BE.


提示:

  方法提煉:

  本題還有一種證法是連接對角線BD,利用對角線互相平分來證明四邊形DEBF是平行四邊形,從而得到BF=DE.利用平行四邊形的性質和判定來證明線段相等或角相等是我們今后學習中經常用的方法.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案