【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)寫出求圖中陰影部分的面積的思路.(不求計算結(jié)果)
【答案】(1)證明見試題解析;(2)(3)﹣π.
【解析】
試題分析:(1)連接OD,如圖,利用等邊三角形的性質(zhì)得到∠A=∠C=60°,再證明OD∥BC,然后利用DF⊥BC可得OD⊥BC,再根據(jù)切線的判定定理可判斷DF為⊙O的切線;
(2)利用等邊三角形的性質(zhì)得到AB=AC=4,∠C=60°,則CD=2,然后在Rt△CDF中利用正弦的定義可計算出DF;
(3)連接OE,如圖,根據(jù)扇形的面積公式,利用S陰影部分=S梯形ODFE﹣S扇形DOE進行計算.
試題解析:(1)連接OD,如圖,∵△ABC為等邊三角形,∴∠A=∠C=60°,
∵OA=OD,∴∠ODA=∠A=60°,∴∠ODA=∠C,∴OD∥BC,∵DF⊥BC,
∴OD⊥BC,∴DF為⊙O的切線;
(2)∵等邊三角形ABC的邊長為4,∴AB=AC=4,∠C=60°,∵AO=AD=2,
∴CD=2,在Rt△CDF中,∵sinC=,∴DF=2sin60°=;
(3)連接OE,如圖,∵CF=CD=1,∴EF=CE﹣CF=1,
∴S陰影部分=S梯形ODFE﹣S扇形DOE=(1+2)﹣=﹣π.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x和雙曲線(k>0),點A(m,n)(m>0)在雙曲線上.
(1)當m=n=2時,
①直接寫出k的值;
②將直線y=﹣x作怎樣的平移能使平移后的直線與雙曲線只有一個交點.
(2)將直線y=﹣x繞著原點O旋轉(zhuǎn),設(shè)旋轉(zhuǎn)后的直線與雙曲線交于點B(a,b)(a>0,b>0)和點C.設(shè)直線AB,AC分別與x軸交于D,E兩點,試問:與的值存在怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點
互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,且AB=.點C,E分別在⊙O上,且OC⊥AB于點D,∠E=30°,連接OA.
(1)求OA的長;
(2)若AF是⊙O的另一條弦,且點O到AF的距離為,直接寫出∠BAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,∠BAC=90°.
①當點D在線段BC上時(與點B不重合),如圖1,請你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);
②當點D在線段BC的延長線上時,請你在圖2畫出圖形,判斷①中的結(jié)論是否仍然成立,并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的兩個外角平分線交于點P,則下列結(jié)論正確的是( )
①PA=PC ②BP平分∠ABC ③P到AB,BC的距離相等 ④BP平分∠APC.
A. ①② B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.《九章算術(shù)》中記載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個圓柱截面示意圖(如圖②),其中BO⊥CD于點A,求間徑就是要求⊙O的直徑.
再次閱讀后,發(fā)現(xiàn)AB= 寸,CD= 寸(一尺等于十寸),通過運用有關(guān)知識即可解決這個問題.請你補全題目條件,并幫助小智求出⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列語句正確的是( )
A. 三角形的三條高都在三角形內(nèi)部 B. 三角形不一定具有穩(wěn)定性
C. 三角形的三條中線交于一點 D. 三角形的角平分線可能在三角形的內(nèi)部或外部
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com