【題目】探究證明:

(1)如圖1,在ABC中,AB=AC,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),EGAB,EFAC,CDAB,點(diǎn)G,F(xiàn),D分別是垂足.求證:CD=EG+EF;

猜想探究:

(2)如圖2,在ABC中,AB=AC,點(diǎn)E是BC的延長線上的一個(gè)動(dòng)點(diǎn),EGAB于G,EFAC交AC延長線于F,CDAB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;

問題解決:

(3)如圖3,邊長為10的正方形ABCD的對(duì)角線相交于點(diǎn)O、H在BD上,且BH=BC,連接CH,點(diǎn)E是CH上一點(diǎn),EFBD于點(diǎn)F,EGBC于點(diǎn)G,則EF+EG=

【答案】(1)證明見解析

(2)CD=EG﹣EF,

(3)5

【解析】

試題分析:(1)根據(jù)SABC=SABE+SACE,得到ABCD=ABEG+ACEF,根據(jù)等式的性質(zhì)即可得到結(jié)論;

(2)由于SABC=SABE﹣SACE,于是得到ABCD=ABEG﹣ACEF,根據(jù)等式的性質(zhì)即可得到結(jié)論;

(3)根據(jù)正方形的性質(zhì)得到AB=BC=10,ABC=90°,ACBD,根據(jù)勾股定理得到AC=10,由于SBCH=SBCE+SBHE,得到BHOC=BCEG+BHEF,根據(jù)等式的性質(zhì)即可得到結(jié)論.

試題解析:(1)如圖1,連接AE,

EGAB,EFAC,CDAB,

SABC=SABE+SACE

ABCD=ABEG+ACEF,

AB=AC,

CD=EG+EF;

(2)CD=EG﹣EF,

理由:連接AE,

EGAB,EFAC,CDAB,

SABC=SABE﹣SACE,

ABCD=ABEG﹣ACEF,

AB=AC,

CD=EG﹣EF;

故答案為:CD=EG﹣EF;

(3)四邊形ABCD是正方形,

AB=BC=10,ABC=90°,ACBD,

AC=10

OC=AC=5,

連接BE.

EFBD于點(diǎn)F,EGBC于點(diǎn)G,

SBCH=SBCE+SBHE,

BHOC=BCEG+BHEF,

OC=EG+EF=5,

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成,硬紙板如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有38張硬紙板,裁剪時(shí)x張用A方法,其余用B方法。

1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)

【感受聯(lián)系】在初二的數(shù)學(xué)學(xué)習(xí)中,我們感受過等腰三角形與直角三角形的密切聯(lián)系.等腰三角形作底邊上的高線可轉(zhuǎn)化為直角三角形,直角三角形沿直角邊翻折可得到等腰三角形等等.

【探究發(fā)現(xiàn)】某同學(xué)運(yùn)用這一聯(lián)系,發(fā)現(xiàn)了“30°角所對(duì)的直角邊等于斜邊的一半”.并給出了如下的部分探究過程,請(qǐng)你補(bǔ)充完整證明過程

已知:如圖,在中, °,°.

求證:

證明:

【靈活運(yùn)用】該同學(xué)家有一張折疊方桌如圖①所示,方桌的主視圖如圖②.經(jīng)測得, ,將桌子放平,兩條桌腿叉開的角度.

求:桌面與地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列方程的特征及其解的特點(diǎn).

x=-3的解為x1=-1,x2=-2;

x=-5的解為x1=-2,x2=-3

x=-7的解為x1=-3,x2=-4.

解答下列問題:

(1)請(qǐng)你寫出一個(gè)符合上述特征的方程為____________,其解為x1=-4,x2=-5;

(2)根據(jù)這類方程特征,寫出第n個(gè)方程為________________,其解為x1=-n,x2=-n1;

(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x=-2(n2)(其中n為正整數(shù))的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD為ABC的的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EFAB,F(xiàn)為垂足下列結(jié)論①△ABD≌△EBC;②∠BCE+BCD=180°;AD=AE=EC;BA+BC=2BF其中正確的是

A①②③ B①③④ C①②④ D①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;② ;

(2)請(qǐng)計(jì)算甲六次測試成績的方差;

(3)若乙六次測試成績方差為,你認(rèn)為推薦誰參加比賽更合適,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為貫徹政府報(bào)告中“大眾創(chuàng)業(yè)、萬眾創(chuàng)新”的精神,某鎮(zhèn)對(duì)轄區(qū)內(nèi)所有的小微企業(yè)按年利潤w(萬元)的多少分為以下四個(gè)類型:A類(w<10),B類(10≤w<20),C類(20≤w<30),D類(w≥30),該鎮(zhèn)政府對(duì)轄區(qū)內(nèi)所有小微企業(yè)的相關(guān)信息進(jìn)行統(tǒng)計(jì)后,繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問題:

(1)該鎮(zhèn)本次統(tǒng)計(jì)的小微企業(yè)總個(gè)數(shù)是 ,扇形統(tǒng)計(jì)圖中B類所對(duì)應(yīng)扇形圓心角的度數(shù)為 度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)為了進(jìn)一步解決小微企業(yè)在發(fā)展中的問題,該鎮(zhèn)政府準(zhǔn)備召開一次座談會(huì),每個(gè)企業(yè)派一名代表參會(huì).計(jì)劃從D類企業(yè)的4個(gè)參會(huì)代表中隨機(jī)抽取2個(gè)發(fā)言,D類企業(yè)的4個(gè)參會(huì)代表中有2個(gè)來自高新區(qū),另2個(gè)來自開發(fā)區(qū).請(qǐng)用列表或畫樹狀圖的方法求出所抽取的2個(gè)發(fā)言代表都來自高新區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°, AD平分∠BACBCD,DEABE

求證:(1ACD≌△AED;(2)若AB=6,求DEB的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.

原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BCCD上,EAF=45°,連接EF,則EFBEDF,試說明理由.

(1)思路梳理

ABCD,

ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,可使ABAD重合.

∵∠ADCB=90°,

∴∠FDG=180°,點(diǎn)F、DG共線.

根據(jù)___________,SAS

易證AFG___________AEF

,得EFBEDF

(2)類比引申

如圖2,四邊形ABCD中,ABAD,BAD=90°.點(diǎn)EF分別在邊BC、CD上,EAF=45°.若B、D都不是直角,則當(dāng)BD滿足等量關(guān)系______________B+D=180°

時(shí),仍有EFBEDF

(3)聯(lián)想拓展

如圖3,在ABC中,BAC=90°,ABAC,點(diǎn)D、E均在邊BC上,且DAE=45°.猜想BDDE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案