【題目】如圖,D為O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若O的半徑為2,CBD=30°,求圖中陰影部分的面積.

【答案】(1)判斷CD與圓O相切,理由見解析;(2)2π.

【解析】

(1)連接OD,根據(jù)圓周角定理得∠BDO+∠ODA=90°,因?yàn)?/span>∠CDA=∠DBC,∠DBC=∠BDO,所以∠ODA+∠CDA=90°,即可證得結(jié)論;

(2)求得△OCD的面積和扇形OAD的面積,二者的差 就是陰影部分的面積.

(1)CD與圓O的位置關(guān)系是相切,

理由是:連接OD,

∵AB⊙O的直徑,

∴∠BDA=90°,

∠BDO+∠ODA=90°,

∵OD=OB,

∴∠DBC=∠BDO,

∵∠CDA=∠DBC,

∴∠CDA=∠BDO,

∴∠ODA+∠CDA=90°,

OD⊥DC,

∵ODO,

∴CD與圓O的位置關(guān)系是相切;

(2)∵∠DBC=30°,∠BDO=∠DBC,

∴∠BDO=30°,

∴∠DOA=30°+30°=60°,

∵∠ODC=90°,

∴DC=OD×tan60°=2,

陰影部分的面積S=SODC﹣S扇形DOA=×2×2=2π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:

如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,網(wǎng)格中有一個(gè)格點(diǎn)ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

1)在圖中畫出ABC關(guān)于直線l對稱的A1B1C1

(要求:AA1,BB1,CC1相對應(yīng))

2)求出A1B1C1面積.

3)在直線l上找一點(diǎn)P,使得PA+PB的值最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費(fèi)情況,并將結(jié)果繪制成了如圖的統(tǒng)計(jì)圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費(fèi)的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程有增根,則的值為__________

【答案】2

【解析】方程兩邊都乘(x2),得

x+x2=a,即a=2x2.

分式方程的增根是x=2,

∵原方程增根為x=2,

∴把x=2代入整式方程,得a=2,

故答案為:2.

點(diǎn)睛:本題考查了分式方程的增根,增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出a的值.

型】填空
結(jié)束】
17

【題目】反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(1,6)和(m-3),則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,以點(diǎn)B為圓心,適當(dāng)長為半徑的畫弧,分別交BA,BC于點(diǎn)M、N;再分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,作射線BPAC于點(diǎn)D,則下列說法中不正確的是()

A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,ABC和DCE都是等邊三角形,點(diǎn)B、D、E在同一直線上,連接AE.

填空:

①∠AEC的度數(shù)為   ;

線段AE、BD之間的數(shù)量關(guān)系為   

(2)拓展探究

如圖2,ABC和DCE都是等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B、D、E在同一直線上,CM為DCE中DE邊上的高,連接AE.試求AEB的度數(shù)及判斷線段CM、AE、BM之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖3,在正方形ABCD中,CD=2,點(diǎn)P在以AC為直徑的半圓上,AP=1,①∠DPC=  °; ②請直接寫出點(diǎn)D到PC的距離為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時(shí)后,兩車相距多少千米?

(5)行駛多長時(shí)間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知等腰三角形的一邊長等于8cm,一邊長等于9cm,求它的周長;

(2)等腰三角形的一邊長等于6cm,周長等于28cm,求其他兩邊的長.

查看答案和解析>>

同步練習(xí)冊答案