【題目】如圖,在平面直角坐標(biāo)系中,把以格點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形(每個(gè)小方格都是邊長(zhǎng)為1的正方形).圖中ABC是格點(diǎn)三角形,點(diǎn)A,B,C的坐標(biāo)分別是(﹣4,﹣1),(﹣2,﹣3),(﹣1,﹣2).

1)以O為旋轉(zhuǎn)中心,把ABCO點(diǎn)順時(shí)針旋轉(zhuǎn)90°后得到A1B1C1,畫出A1B1C1;

2)以O為位似中心,在第一象限內(nèi)把ABC放大2倍后得到A2B2C2,畫出A2B2C2

3ABC內(nèi)有一點(diǎn)Pa,b),寫出經(jīng)過(2)位似變換后P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo).

【答案】1)如圖,A1B1C1為所作;見解析;(2)如圖,A2B2C2為所作;見解析;(3)點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為(﹣2a,﹣2b).

【解析】

1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)依次作出點(diǎn)AB、C的對(duì)應(yīng)點(diǎn)A1、B1、C1的坐標(biāo),再順次連接即可;

2)把點(diǎn)A、B、C的橫縱坐標(biāo)都乘以-2得到點(diǎn)A2、B2、C2的坐標(biāo),再順次連接即可;

3)根據(jù)(2)題對(duì)應(yīng)點(diǎn)的坐標(biāo)特點(diǎn)求解.

1)如圖,A1B1C1為所作;

2)如圖,A2B2C2為所作;

3)點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為(﹣2a,﹣2b).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角△ABC中,AB=5tanC=3,BDAC于點(diǎn)D,BD=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)PPEAC交邊BC于點(diǎn)E,以PE為邊作RtPEF,使∠EPF=90°,點(diǎn)F在點(diǎn)P的下方,且EFAB.設(shè)△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t0).

1)直接寫出線段AC的長(zhǎng)為

2)當(dāng)△PEF與△ABD重疊部分圖形為四邊形時(shí),求St之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

3)若邊EF所在直線與邊AC交于點(diǎn)Q,連結(jié)PQ,如圖2,

①當(dāng)PQ將△PEF的面積分成1:2兩部分時(shí),求AP的長(zhǎng).

②直接寫出△ABC的某一頂點(diǎn)到P、Q兩點(diǎn)距離相等時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸交于A(﹣1,0)和B3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),分別連接AC、CD、AD

1)求拋物線的函數(shù)表達(dá)式以及頂點(diǎn)D的坐標(biāo);

2)在拋物線上取一點(diǎn)P(不與點(diǎn)C重合),并分別連接PA、PD,當(dāng)PAD的面積與ACD的面積相等時(shí),求點(diǎn)P的坐標(biāo);

3)將(1)中所求得的拋物線沿A、D所在的直線平移,平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D,當(dāng)四邊形AACC是菱形時(shí),求此時(shí)平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點(diǎn)坐標(biāo)為,下列結(jié)論:;②;③;④方程有兩個(gè)相等的實(shí)數(shù)根,其中正確的結(jié)論是________.(只填序號(hào)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一面靠墻的空地上用長(zhǎng)24m的籬笆,圍成中間隔有兩道籬笆的長(zhǎng)方形花圃,設(shè)花圃的一邊ABxm),面積Sm2).

1)求Sx之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

2)若墻的最大可用長(zhǎng)度為8m,求圍成花圃的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、BC

1)請(qǐng)完成如下操作:

①以點(diǎn)O為坐標(biāo)原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;、诟鶕(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD

2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:

①寫出點(diǎn)的坐標(biāo):C 、D

②⊙D的半徑= (結(jié)果保留根號(hào));

③若E70),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:

2)已知:如圖,在△ABC中,ABAC,點(diǎn)D、E、F分別是△ABC各邊的中點(diǎn),求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O

1)過點(diǎn)OOEBC于點(diǎn)E,連接DEOC于點(diǎn)F,作FGBCG點(diǎn),則ABCFGC是位似圖形嗎?若是,請(qǐng)說出位似中心,并求出位似比;若不是,請(qǐng)說明理由.

2)連接DGAC于點(diǎn)H,作HIBCI,試確定的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案