【題目】如圖,RtABCC=90°,點(diǎn)DAB上的一點(diǎn),以AD為直徑的⊙OBC相切于點(diǎn)E,連接AE

1)求證:AE平分∠BAC;

2)若AC=8,OB=18,求BD的長(zhǎng).

【答案】1)證明見(jiàn)解析;(212.

【解析】試題分析:(1)如圖,連接OE.首先證明ACOE,推出∠CAE=∠AEO,由OA=OE,推出∠AEO=∠OAE=∠CAE即可證明.

2)設(shè)OE=OA=OD=r,由OEAC,得,即,解方程即可.

試題解析:(1)證明:如圖,連接OE

BC是⊙O切線,∴OEBC∴∠OEB=90°,∵∠C=90°∴∠C=∠OEB=90°,ACOE,∴∠CAE=∠AEO,OA=OE∴∠AEO=∠OAE=∠CAE,AE平分∠CAB;

2)解:設(shè)OE=OA=OD=r,OEAC ,即,r=6(負(fù)根已經(jīng)舍棄),BD=OBOD=186=12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)(0+-2

2)利用乘法公式計(jì)算:898×902+4

3)(3x2y)(﹣3x2y)﹣(4yx

4)(a+2b3c)(a2b+3c

5)先化簡(jiǎn),再求值:[a+42﹣(3a2a8]+2a),其中a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對(duì)他們的射擊成績(jī)進(jìn)行了測(cè)試,5次打靶命中的環(huán)數(shù)如下:

甲:8,7,9,8,8; 乙:9,6,10,8,7;

(1)將下表填寫(xiě)完整:

平均數(shù)

中位數(shù)

方差

8

8

2

(2)根據(jù)以上信息,若你是教練,你會(huì)選擇誰(shuí)參加射擊比賽,理由是什么?

(3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績(jī)的方差會(huì) .(填變大變小不變”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,過(guò)點(diǎn)的直線,邊上一點(diǎn),過(guò)點(diǎn)交直線于點(diǎn),垂足為點(diǎn),連結(jié)、

1)求證:

2)當(dāng)點(diǎn)中點(diǎn)時(shí),四邊形是什么特殊四邊形?說(shuō)明你的理由;

3)若點(diǎn)中點(diǎn),當(dāng)四邊形是正方形時(shí),則大小滿足什么條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某山是某市民周末休閑爬山的好去處,但總有些市民隨手丟垃圾的情況出現(xiàn).為了美化環(huán)境,提高市民的環(huán)保意識(shí),某外國(guó)語(yǔ)學(xué)校某附屬學(xué)校青年志愿者協(xié)會(huì)組織50人的青年志愿者團(tuán)隊(duì),在周末前往臨某森林公園撿垃圾.已知平均每分鐘男生可以撿3件垃圾,女生可以撿2件垃圾,且該團(tuán)隊(duì)平均每分鐘可以撿130件垃圾.請(qǐng)問(wèn)該團(tuán)隊(duì)的男生和女生各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫(xiě)出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價(jià)應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)G、H分別是BC、CD邊上的點(diǎn),直線GHAB、AD的延長(zhǎng)線相交于點(diǎn)E、F,連接AG、AH

1)當(dāng)BG=2,DH=3時(shí),則GHHF=  ,AGH=  °

2)若BG=3,DH=1,求DF、EG的長(zhǎng);

3)設(shè)BG=x,DH=y,若ABG∽△FDH,求yx之間的函數(shù)關(guān)系式,并求出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)在斜邊上,連接,把沿直線翻折,使點(diǎn)落在同一平面內(nèi)的點(diǎn)處.當(dāng)的直角邊垂直時(shí),的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),沿著箭頭所示方向,每次移動(dòng)1個(gè)單位,依次得到點(diǎn)P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,則點(diǎn)P2018的坐標(biāo)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案