如圖,點E為△ABC邊AB上一點,AC=BC=BE,AE=EC,BD⊥AC于D,求∠CBD的度數(shù).
分析:首先設∠A=x°,由AC=BC=BE,AE=EC,可表示出∠BEC,∠BCE與∠CBE的值,繼而可得方程:2x+2x+x=180,解此方程即可求得答案.
解答:解:設∠A=x°,
∵AC=BC,AE=EC,
∴∠ABC=∠A=x°∠ACE=∠A=x°,
∴∠BEC=∠A+∠ACE=2x°,
∵BC=BE,
∴∠BEC=∠BCE=2x°,
在△BEC中,∠BEC+∠BCE+∠EBC=180°,
∴2x+2x+x=180,
解得:x=36,
∴∠A=∠ABC=36°,
∴∠CBD=90°-∠A-∠ABC=18゜.
點評:此題考查了等腰三角形的性質、三角形外角的性質以及三角形內角和定理.此題難度適中,注意掌握方程思想與數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、如圖,點H為△ABC的垂心,以AB為直徑的⊙O1和△BCH的外接圓⊙O2相交于點D,延長AD交CH于點P,
求證:點P為CH的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、尺規(guī)作圖(不寫作法,但要保留作圖痕跡)
如圖,點E為∠ABC邊AC上一點,過點E作直線MN,使MN∥AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點P為△ABC的內心,延長AP交△ABC的外接圓⊙O于D,過D作DE∥BC,交AC的延長線于E點.①則直線DE與⊙O的位置關系是
 
;②若AB=4,AD=6,CE=3,則DE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點G為△ABC的重心,DE過點G,且DE∥BC,EF∥AB,那么CF:BF=
1:2
1:2

查看答案和解析>>

同步練習冊答案