【題目】如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系(如圖1),y軸是拋物線的對稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.

(1)求拋物線的解析式;
(2)現(xiàn)有一輛貨運(yùn)卡車,高4.4m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙向道(如圖2),為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運(yùn)卡車還能通過隧道嗎?

【答案】
(1)解:∵OE為線段BC的中垂線,

∴OC= BC.

∵四邊形ABCD是矩形,

∴AD=BC=8m,AB=CD=2m,

∴OC=4.

∴D(4,2,).E(0,6).

設(shè)拋物線的解析式為y=ax2+c,由題意,得

,

解得: ,

∴y=﹣ x2+6


(2)解:由題意,得

當(dāng)y=4.4時,4.4=﹣ x2+6,

解得:x=± ,

∴寬度為: >2.4,

∴它能通過該隧道


(3)解:由題意,得

﹣0.4)= ﹣0.2>2.4,

∴該輛貨運(yùn)卡車還能通過隧道


【解析】(1)拋物線的解析式為y=ax2+c,根據(jù)E點(diǎn)及D點(diǎn)的坐標(biāo)由待定系數(shù)法就可以求出結(jié)論;(2)當(dāng)y=2.4時代入(1)的解析式求出x的值就求出結(jié)論;(3)將(2)求出的寬度﹣0.4m后除以2的值與2.4比較就可以求出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線EFAB、CD分別相交于點(diǎn)E、F.

(1)如圖1,若∠1=120°,2=60°,求證ABCD;

(2)在(1)的情況下,若點(diǎn)P是平面內(nèi)的一個動點(diǎn),連結(jié)PE、PF,探索∠EPF、PEB、PFD三個角之間的關(guān)系;

①當(dāng)點(diǎn)P在圖2的位置時,可得∠EPF=PEB+∠PFD;

請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)

解:如圖2,過點(diǎn)PMNAB,

則∠EPM=PEB_____

ABCD(已知),MNAB(作圖)

MNCD_____

∴∠MPF=PFD

∴∠_____+∠_____=PEB+∠PFD(等式的性質(zhì))

即∠EPF=PEB+∠PFD

②當(dāng)點(diǎn)P在圖3的位置時,∠EPF、PEB、PFD三個角之間有何關(guān)系并證明.

③當(dāng)點(diǎn)P在圖4的位置時,請直接寫出∠EPF、PEB、PFD三個角之間的關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,2).

(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個動點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時,求點(diǎn)D的坐標(biāo)及此時三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列關(guān)系錯誤的是(  )

A. AOC=∠AOB+∠BOC

B. AOC=∠AOD-∠COD

C. AOC=∠AOB+∠BOD-∠BOC

D. AOC=∠AOD-∠BOD+∠BOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個口袋中有紅球、黃球共20個,這些除顏色外都相同,將口袋中的球攪拌均勻,從中隨機(jī)摸出一球,記下顏色后再放回口袋,不斷重復(fù)這一過程,共摸了200次,發(fā)現(xiàn)其中有161次摸到紅球.則這個口袋中紅球數(shù)大約有(
A.4個
B.10個
C.16個
D.20個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有如下結(jié)論:
①a>0;②b>0;③a+b+c>0;④2a+b=0;⑤方程ax2+bx+c=0的解為x1=﹣1,x2=3.
其中正確的是(

A.①②③
B.②③④
C.③④⑤
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,則tan∠ACD的值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠ACB=45°,∠D=30°,B、C、D在同一直線上,連接AD,若AB= ,則sin∠CAD=

查看答案和解析>>

同步練習(xí)冊答案