【題目】下面是一位同學(xué)的一道作圖題:
已知線段a、b、c(如圖),求作線段x,使
他的作法如下:
(1)以點(diǎn)O為端點(diǎn)畫射線,.
(2)在上依次截取,.
(3)在上截取.
(4)聯(lián)結(jié),過點(diǎn)B作,交于點(diǎn)D.
所以:線段________就是所求的線段x.
①試將結(jié)論補(bǔ)完整
②這位同學(xué)作圖的依據(jù)是________
③如果,,,試用向量表示向量.
【答案】①CD;②平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例;③.
【解析】
①根據(jù)作圖依據(jù)平行線分線段成比例定理求解可得;②根據(jù)“平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例”可得;③先證得,即,從而知.
①∵,
∴OA:AB=OC:CD,
∵,,,,
∴線段就是所求的線段x,
故答案為:
②這位同學(xué)作圖的依據(jù)是:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例;
故答案為:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例;
③∵、,且,
∴,
∴,即,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構(gòu)成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點(diǎn)E的坐標(biāo)分別為( 。
A. 15°和(2,1+)
B. 75°和(2,﹣1)
C. 15°和(2,1+)或75°和(2,﹣1)
D. 15°和(2,1+)或75°和(2,1﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).
(1)如圖,當(dāng)∠APB=45°時(shí),求AB及PD的長;
(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬度為20 m,長為32 m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪,要使草坪的面積為540 m2 , 求道路的寬.如果設(shè)小路寬為x m,根據(jù)題意,所列方程正確的是( )
A.(20+x)(32+x)=540
B.(20﹣x)(32﹣x)=100
C.(20﹣x)(32﹣x)=540
D.(20-2x)(32﹣2x)=540
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以2cm/s的速度向點(diǎn)終點(diǎn)B運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC以1cm/s的速度向點(diǎn)終點(diǎn)C運(yùn)動,它們到達(dá)終點(diǎn)后停止運(yùn)動.
(1)幾秒后,點(diǎn)P、D的距離是點(diǎn)P、Q的距離的2倍;
(2)幾秒后,△DPQ的面積是24cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點(diǎn),∥,且FG=EF.
(1)求證:四邊形是菱形;
(2)聯(lián)結(jié)AE,又知AC⊥ED,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于,是的直徑,和相交于點(diǎn),且.
(1)求證:;
(2)分別延長,交于點(diǎn),過點(diǎn)作交的延長線于點(diǎn),若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸,y軸分別交于點(diǎn)A(2,0),點(diǎn)B(0,2),動點(diǎn)D以1個(gè)單位長度/秒的速度從點(diǎn)A出發(fā)向x軸負(fù)半軸運(yùn)動,同時(shí)動點(diǎn)E以個(gè)單位長度/秒的速度從點(diǎn)B出發(fā)向y軸負(fù)半軸運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F
(1)求∠OAB度數(shù);
(2)當(dāng)t為何值時(shí),四邊形ADEF為菱形,請求出此時(shí)二次函數(shù)解析式;
(3)是否存在實(shí)數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,DB⊥BC,DB平分∠ADC,點(diǎn)E為邊CD的中點(diǎn),AB⊥BE.
(1)求證:BD2=ADDC;
(2)連結(jié)AE,當(dāng)BD=BC時(shí),求證:ABCE為平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com